『数据结构与算法』树

2020/12/21 8:07:27

本文主要是介绍『数据结构与算法』树,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

GitHub源码分享

主页地址:/gozhuyinglong.github.io
源码分享:github.com/gozhuyinglong/blog-demos

1. 前言

我们前面讲到了[数组]和[链表]两种数据结构,其各自有自己的优缺点,我们来回顾一下。

  • 数组(Array)
    优点:通过下标访问速度非常快。
    缺点:需要检索具体某个值时,或者插入值时(会整体移动)效率较低

  • 链表(Linked List)
    优点:在插入某个值时,效率比数组高
    缺点:检索某个值时效率仍然较低

我们本篇讲到的树,便能提高数据的存储和读取效率。

2. 树(Tree)

树是一种非线性的数据结构,它包含n(n>=1)个节点,(n-1)条边的有穷集合。把它叫做“树”是因为它看起来像一个倒挂的树,也就是说它是根朝上,叶子朝下的。

3. 树结构的特点

  • 树结构的每个元素称为节点(node)
  • 每个节点都有零个或多个子节点
  • 没有父节点的节点叫做根节点(root)
  • 每一个非根结点有且只有一个父结点
  • 除了根结点外,每个子结点可以分为多个不相交的子树
  • 父子节点由一条有向的边(edgeo)相连结。

树结构

4. 树的常用术语

结合上图了解树的常用术语,加深对树的理解。

  • 节点(node)
    树结构中的每一个元素称为一个节点,如上图中的ABC…M

  • 根节点(root)
    没有父节点的节点叫做根节点,如上图中的A

  • 父节点(parent)
    一个节点的上级节点叫做它的父节点,一个节点最多只能有一个父节点,如上图中C是F的父节点

  • 子节点(child)
    一个节点的下级节点叫做它的子节点,一个节点的子节点可以有多个,如上图中的IJK是E的子节点

  • 兄弟节点(siblings)
    拥有相同父节点的节点叫做兄弟节点,如上图中的L和M是兄弟节点

  • 叶子节点(leaf)
    没有子节点的节点叫做叶子节点,如图中的BFGLMIJK

  • 边(dege)
    父子节点间的连接称为边,一棵树的边数为(n-1)

  • 节点的权(weight)
    节点上的元素值

  • 路径(path)
    从root节点找到该节点的路线,如上图中L的路径为A-D-H-L。路径的长为该路径上边的条数,L路径的长为3(n-1)。

  • 层(layer)
    距离根节点相等的路径长度为一层,如上图中A为第一层;BCDE为第二层;FGHIJK为第三层;LM为第四层

  • 子树(child tree)
    以某一节点(非root)做为根的树称为子树,如以E为根的树称为A的子树

  • 树的高度(height)
    树的最大层数,上图中树的高度为4

  • 森林(words)
    多棵子树构成树林

5. 代码实现

我们将第3章中的树结构图通过Java代码进行实现。

TreeNode类为树的一个节点,其中:

  • element:存储当前节点的元素数据
  • firstChild:指向当前节点的第一个子节点(如:A的firstChild为B;D的firstChild为G;G的firstChild为空)
  • nextSibling:指向当前节点的下一个兄弟节点(如:B的nextSibling为C;G的nextSibling为H;H的nextSibling为空)

Tree类实现了一棵树的初始化和遍历,listAll遍历算法的核心是递归。具体内容见代码

public class TreeDemo {

    public static void main(String[] args) {
        new Tree().initTree().listAll();

    }

    private static class Tree {

        private TreeNode root; // 树根

        /**
         * 初始化一棵树
         */
        private Tree initTree() {

            TreeNode a = new TreeNode("A");
            TreeNode b = new TreeNode("B");
            TreeNode c = new TreeNode("C");
            TreeNode d = new TreeNode("D");
            TreeNode e = new TreeNode("E");
            TreeNode f = new TreeNode("F");
            TreeNode g = new TreeNode("G");
            TreeNode h = new TreeNode("H");
            TreeNode i = new TreeNode("I");
            TreeNode j = new TreeNode("J");
            TreeNode k = new TreeNode("K");
            TreeNode l = new TreeNode("L");
            TreeNode m = new TreeNode("M");

            root = a;

            a.firstChild = b;

            b.nextSibling = c;

            c.nextSibling = d;
            c.firstChild = f;

            d.nextSibling = e;
            d.firstChild = g;

            e.firstChild = i;

            g.nextSibling = h;

            h.firstChild = l;

            i.nextSibling = j;

            j.nextSibling = k;

            l.nextSibling = m;

            return this;
        }


        /**
         * 遍历一棵树,从root开始
         */
        public void listAll() {
            listAll(root, 0);
        }

        /**
         * 遍历一棵树
         *
         * @param node  树节点
         * @param depth 层级(用于辅助输出)
         */
        public void listAll(TreeNode node, int depth) {
            StringBuilder t = new StringBuilder();
            for (int i = 0; i < depth; i++) {
                t.append("\t");
            }
            System.out.printf("%s%s\n", t.toString(), node.element);

            // 先遍历子节点,子节点的层级需要+1
            if (node.firstChild != null) {
                listAll(node.firstChild, depth + 1);
            }

            // 后遍历兄弟节点,兄弟节点的层级不变
            if (node.nextSibling != null) {
                listAll(node.nextSibling, depth);
            }
        }


    }

    private static class TreeNode {
        private final Object element; // 当前节点数据
        private TreeNode firstChild; // 当前节点的第一个子节点
        private TreeNode nextSibling; // 当前节点的下一个兄弟节点

        public TreeNode(Object element) {
            this.element = element;
        }

    }
}

输出结果:

A
	B
	C
		F
	D
		G
		H
			L
			M
	E
		I
		J
		K


这篇关于『数据结构与算法』树的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程