Kera高层API
2021/4/15 18:56:36
本文主要是介绍Kera高层API,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
目录
- Keras != tf.keras
- Outline1
- Metrics
- Step1.Build a meter
- Step2.Update data
- Step3.Get Average data
- Clear buffer
- Outline2
- Compile + Fit
- Individual loss and optimize1
- Now1
- Individual epoch and step2
- Now2
- Standard Progressbar
- Individual evaluation3
- Now3
- Evaluation
- Test
- Predict
Keras != tf.keras
Keras是一个框架
datasets
layers
losses
metrics
optimizers
Outline1
Metrics
update_state
result().numpy()
reset_states
Metrics
Step1.Build a meter
acc_meter = metrics.Accuarcy() loss_meter = metrics.Mean
Step2.Update data
loss_meter.update_state(loss) acc_meter.update_state(y,pred)
Step3.Get Average data
print(step, 'loss:', loss_meter.result().numpy()) # ... print(step,'Evaluate Acc:', total_correct/total, acc_meter.result().numpy()
Clear buffer
if step % 100 == 0: print(step, 'loss:', loss_meter.result().numpy()) loss_meter.reset_states() # ... if step % 500 == 0: total, total_correct = 0., 0 acc_meter.reset_states()
Outline2
Compile
Fit
Evaluate
Predict
Compile + Fit
Individual loss and optimize1
with tf.GradientTape() as tape: x = tf.reshape(x, (-1, 28*28)) out = network(x) y_onehot = tf.one_hot(y, depth=10) loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True)) grads = tape.gradient(loss, network.trainable_variables) optimizer.apply_gradients(zip(grads, network.trainable_variables))
Now1
network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(fromlogits=True), metircs=['accuracy'])
Individual epoch and step2
for epoch in range(epochs): for step, (x, y) in enumerate(db): # ...
Now2
network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(fromlogits=True), metircs=['accuracy']) network.fit(db, epochs=10)
Standard Progressbar
Individual evaluation3
if step % 500 == 0: total, total_correct = 0., 0 for step, (x, y) in enumerate(ds_val): x = tf.reshape(x, (-1, 28*28)) out = network(x) pred = tf.argmax(out, axis=1) pred = tf.cast(pred, dtype=tf.int32) correct = tf.equal(pred, y) total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy() total += x.shape[0] print(step, 'Evaluate Acc:', total_correct/total)
Now3
network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(fromlogits=True), metircs=['accuracy']) # validation_freq=2表示2个epochs做一次验证 network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
Evaluation
Test
network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(fromlogits=True), metircs=['accuracy']) # validation_freq=2表示2个epochs做一次验证 network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2) network.evaluate(ds_val)
Predict
sample = next(iter(ds_val)) x = sample[0] y = sample[1] pred = network.predict(x) y = tf.argmax(y, axis=1) pred = tf.argmax(pre, axis=1) print(pred) print(y)
这篇关于Kera高层API的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南