池化与采样

2021/4/15 18:58:22

本文主要是介绍池化与采样,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

目录

  • Outline
  • Reduce Dim
  • subsample
    • Max/Avg pooling
    • Strides
    • For instance
  • upsample
    • UpSampling2D
  • ReLu


Outline

  • Pooling

  • upsample

  • ReLU

Reduce Dim

36-池化与采样-降维.jpg

subsample

Max/Avg pooling

  • stride = 2

36-池化与采样-池化.jpg

Strides

  • stride = 1

36-池化与采样-池化步长1.jpg

For instance

36-池化与采样-池化all.jpg

import tensorflow as tf
from tensorflow.keras import layers
x = tf.random.normal([1, 14, 14, 4])
x.shape
TensorShape([1, 14, 14, 4])
pool = layers.MaxPool2D(2, strides=2)
out = pool(x)
out.shape
TensorShape([1, 7, 7, 4])
pool = layers.MaxPool2D(3, strides=2)
out = pool(x)
out.shape
TensorShape([1, 6, 6, 4])
out = tf.nn.max_pool2d(x, 2, strides=2, padding='VALID')
out.shape
TensorShape([1, 7, 7, 4])

upsample

  • nearest

  • bilinear

36-池化与采样-上采样.jpg

UpSampling2D

x = tf.random.normal([1, 7, 7, 4])
x.shape
TensorShape([1, 7, 7, 4])
layer = layers.UpSampling2D(size=3)
out = layer(x)
out.shape
TensorShape([1, 21, 21, 4])
layer = layers.UpSampling2D(size=2)
out = layer(x)
out.shape
TensorShape([1, 14, 14, 4])

ReLu

36-池化与采样-relu.jpg

x = tf.random.normal([2,3])
x
<tf.Tensor: id=76, shape=(2, 3), dtype=float32, numpy=
array([[-0.30181265,  0.39785287, -0.78380096],
       [ 0.6593401 , -0.40962896, -0.3656048 ]], dtype=float32)>
tf.nn.relu(x)
x
<tf.Tensor: id=76, shape=(2, 3), dtype=float32, numpy=
array([[-0.30181265,  0.39785287, -0.78380096],
       [ 0.6593401 , -0.40962896, -0.3656048 ]], dtype=float32)>
layers.ReLU()(x)
<tf.Tensor: id=80, shape=(2, 3), dtype=float32, numpy=
array([[0.        , 0.39785287, 0.        ],
       [0.6593401 , 0.        , 0.        ]], dtype=float32)>


这篇关于池化与采样的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程