Improving Question Answering with External Knowledge
2021/5/1 18:57:29
本文主要是介绍Improving Question Answering with External Knowledge,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
第一遍:
亮点
1、通过引用外部数据,整合到预训练模型中,通过实验证实其有效
- First, we identify concepts in question and answer options and link these potentially ambiguous concepts to an open domain resource that provides unstructured background information relevant to the concepts and used to enrich the original reference corpus
- In comparison to previous work (e.g., (Yadav et al., 2019)), we perform informa-tion retrieval based on the enriched corpus instead of the original one to form a document for answering a question。
- Second, we increase the amount of training data by appending additional in-domain subject-area QA datasets
2、但当添加的数据集相比赛题更加“生僻”时,其准确率会有所下降
- performance degrades when the added data exhibit a higher level of difficulty than the original training data
这篇关于Improving Question Answering with External Knowledge的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南