【图像融合】基于matlab GUI 拉普拉斯金字塔+小波变换+NSCT图像融合【含Matlab源码 870期】
2021/5/2 20:30:27
本文主要是介绍【图像融合】基于matlab GUI 拉普拉斯金字塔+小波变换+NSCT图像融合【含Matlab源码 870期】,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、简介
1974年,法国工程师J.Morlet首先提出小波变换的概念,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的多尺度分析之后,小波分析才开始蓬勃发展起来。小波分析的应用领域十分广泛,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去噪声等。本章将着重阐述小波在图像中的应用分析。
1 小波变换原理
小波分析是一个比较难的分支,用户采用小波变换,可以实现图像压缩,振动信号的分解与重构等,因此在实际工程上应用较广泛。小波分析与Fourier变换相比,小波变换是空间域和频率域的局部变换,因而能有效地从信号中提取信息。小波变换通过伸缩和平移等基本运算,实现对信号的多尺度分解与重构,从而很大程度上解决了Fourier变换带来的很多难题。
小波分析作一个新的数学分支,它是泛函分析、Fourier分析、数值分析的完美结晶;小波分析也是一种“时间—尺度”分析和多分辨分析的新技术,它在信号分析、语音合成、图像压缩与识别、大气与海洋波分析等方面的研究,都有广泛的应用。
(1)小波分析用于信号与图像压缩。小波压缩的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中能够抗干扰。基于小波分析的压缩方法很多,具体有小波压缩,小波包压缩,小波变换向量压缩等。
(2)小波也可以用于信号的滤波去噪、信号的时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)小波分析在工程技术等方面的应用概括的包括计算机视觉、曲线设计、湍流、远程宇宙的研究与生物医学方面。
2 多尺度分析
3 图像的分解和量化
4 图像压缩编码
5 图像编码评价
二、源代码
function varargout = MainForm(varargin) % MAINFORM MATLAB code for MainForm.fig % MAINFORM, by itself, creates a new MAINFORM or raises the existing % singleton*. % % H = MAINFORM returns the handle to a new MAINFORM or the handle to % the existing singleton*. % % MAINFORM('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAINFORM.M with the given input arguments. % % MAINFORM('Property','Value',...) creates a new MAINFORM or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before MainForm_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to MainForm_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help MainForm % Last Modified by GUIDE v2.5 01-May-2021 22:52:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @MainForm_OpeningFcn, ... 'gui_OutputFcn', @MainForm_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before MainForm is made visible. function MainForm_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to MainForm (see VARARGIN) % Choose default command line output for MainForm handles.output = hObject; clc; axes(handles.axes1); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); axes(handles.axes2); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); axes(handles.axes3); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); % Update handles structure guidata(hObject, handles); % UIWAIT makes MainForm wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = MainForm_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clc; axes(handles.axes1); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); axes(handles.axes2); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); axes(handles.axes3); cla reset; box on; set(gca, 'XTickLabel', '', 'YTickLabel', ''); handles.file1 = []; handles.file2 = []; handles.result = []; [filename, pathname] = uigetfile({'*.jpg;*.bmp;*.tif;*.png;*.gif', 'All Image Files';... '*.*', 'All Files' }, '选择图像1', ... fullfile(pwd, 'images\\实验图像1\\a.tif')); if isequal(filename, 0) return; end handles.file1 = fullfile(pathname, filename); Img1=imread(fullfile(pathname, filename)); % I=rgb2gray(Img); % Img1 = imresize(I,[240,320]); axes(handles.axes1); imshow(Img1, []); handles.Img1 =Img1 ; guidata(hObject, handles); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile({'*.jpg;*.bmp;*.tif;*.png;*.gif', 'All Image Files';... '*.*', 'All Files' }, '选择图像2', ... fullfile(pwd, 'images\\实验图像1\\b.tif')); if isequal(filename, 0) return; end handles.file2 = fullfile(pathname, filename); Img2 =imread(fullfile(pathname, filename)); axes(handles.axes2); imshow(Img2, []); handles.Img2 =Img2 ; guidata(hObject, handles); % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% 小波变换算法 imA = handles.Img1; imB = handles.Img2; M1 = double(imA) / 256; M2 = double(imB) / 256; zt = 2; wtype = 'haar'; [c0, s0] = Wave_Decompose(M1, zt, wtype); [c1, s1] = Wave_Decompose(M2, zt, wtype); Coef_Fusion = Fuse_Process(c0, c1, s0, s1); Y = Wave_Reconstruct(Coef_Fusion, s0, wtype); handles.result = im2uint8(mat2gray(Y)); guidata(hObject, handles); msgbox('小波融合处理完毕!', '提示信息', 'modal'); % if isempty(handles.result) % msgbox('请进行填充处理!', '提示信息', 'modal'); % return; % end axes(handles.axes3); imshow(handles.result, []); title('小波变换融合处理结果') % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% 拉普拉斯金字塔算法 addpath('./拉普拉斯金字塔算法图像融合') imA = handles.Img1; imB = handles.Img2; % im1 = double(imA) / 256; % im2= double(imB) / 256; im1 = double(imA); im2 = double(imB); %% %拉普拉斯滤波器 w = [1 4 6 4 1; 4 16 24 16 4; 6 24 36 24 6; 4 16 24 16 4; 1 4 6 4 1]/256; G = cell(1,5); H = cell(1,5); I = cell(1,5); G{1} = im1;%第一层为原图像 H{1} = im2; function Y = Wave_Reconstruct(Coef_Fusion, s, wtype) if nargin < 3 end Y = waverec2(Coef_Fusion, s, wtype); KK = size(c1); Coef_Fusion = zeros(1, KK(2)); Coef_Fusion(1:s1(1,1)*s1(1,2)) = (c0(1:s1(1,1)*s1(1,2))+c1(1:s1(1,1)*s1(1,2)))/2; MM1 = c0(s1(1,1)*s1(1,2)+1:KK(2)); MM2 = c1(s1(1,1)*s1(1,2)+1:KK(2)); mm = (abs(MM1)) > (abs(MM2)); Y = (mm.*MM1) + ((~mm).*MM2);
三、运行结果
四、备注
版本:2014
完整代码或者代写添加QQ 1564658423
这篇关于【图像融合】基于matlab GUI 拉普拉斯金字塔+小波变换+NSCT图像融合【含Matlab源码 870期】的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用
- 2025-01-03混合搜索:用LanceDB实现语义和关键词结合的搜索技术(应用于实际项目)
- 2025-01-03停止思考数据管道,开始构建数据平台:介绍Analytics Engineering Framework
- 2025-01-03如果 Azure-Samples/aks-store-demo 使用了 Score 会怎样?
- 2025-01-03Apache Flink概述:实时数据处理的利器
- 2025-01-01使用 SVN合并操作时,怎么解决冲突的情况?-icode9专业技术文章分享