算法学习(9):筛法

2021/5/5 20:27:09

本文主要是介绍算法学习(9):筛法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

线性筛(欧拉筛)

void init() {
  phi[1] = 1;
  for (int i = 2; i < MAXN; ++i) {
    if (!vis[i]) {
      phi[i] = i - 1;
      pri[cnt++] = i;
    }
    for (int j = 0; j < cnt; ++j) {
      if (1ll * i * pri[j] >= MAXN) break;
      vis[i * pri[j]] = 1;
      if (i % pri[j]) {
        phi[i * pri[j]] = phi[i] * (pri[j] - 1);
      } else {
        // i % pri[j] == 0
        // 换言之,i 之前被 pri[j] 筛过了
        // 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是
        // pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break
        // 掉就好了
        phi[i * pri[j]] = phi[i] * pri[j];
        break;
      }
    }
  }
}

注意到筛法求素数的同时也得到了每个数的最小质因子

筛法求欧拉函数

void phi_table(int n, int* phi) {
  for (int i = 2; i <= n; i++) phi[i] = 0;
  phi[1] = 1;
  for (int i = 2; i <= n; i++)
    if (!phi[i])
      for (int j = i; j <= n; j += i) {
        if (!phi[j]) phi[j] = j;
        phi[j] = phi[j] / i * (i - 1);
      }
}

筛法求莫比乌斯函数

void pre() {
  mu[1] = 1;
  for (int i = 2; i <= 1e7; ++i) {
    if (!v[i]) mu[i] = -1, p[++tot] = i;
    for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
      v[i * p[j]] = 1;
      if (i % p[j] == 0) {
        mu[i * p[j]] = 0;
        break;
      }
      mu[i * p[j]] = -mu[i];
    }
  }

筛法求约数个数

void pre() {
  d[1] = 1;
  for (int i = 2; i <= n; ++i) {
    if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
    for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
      v[p[j] * i] = 1;
      if (i % p[j] == 0) {
        num[i * p[j]] = num[i] + 1;
        d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
        break;
      } else {
        num[i * p[j]] = 1;
        d[i * p[j]] = d[i] * 2;
      }
    }
  }
}
## 筛法求约数和

void pre() {
g[1] = f[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
g[i * p[j]] = g[i] * p[j] + 1;
f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
break;
} else {
f[i * p[j]] = f[i] * f[p[j]];
g[i * p[j]] = 1 + p[j];
}
}
}
for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod;
}


                   

这篇关于算法学习(9):筛法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程