【历史遗留】还有记录的:HDOJ-刷题.md
2021/5/7 19:00:37
本文主要是介绍【历史遗留】还有记录的:HDOJ-刷题.md,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
HDOJの旅
[by_041]
曾经有一个 序
目录
文章目录
- HDOJの旅
- [by_041]
- 曾经有一个 序
- 目录
- @[toc]
- [ACM Steps](http://acm.hdu.edu.cn/game)
- Chapter One - 阶段1
- Section One - 基本输入输出
- Section Two - 简单的推公式
- Section Three - 数据结构初步、算法初步
- Chapter Two - 阶段2
- Section One - 数论初步
- 2.1.1.最小公倍数(P1108,LCM)
- 2.1.2.How many prime numbers(P2138)
- 2.1.3.相遇周期(P1713)
- 2.1.4.
- 2.1.5.
- 2.1.6.
- 2.1.7.Leftmost Digit(P1060)
- 2.1.8.小数化分数2(P1717)
- Problems Set
- P1000 A + B Problem
- P1001 Sum Problem
- P1002 A + B Problem II
- P1003 Max Sum
- P1004 Let the Balloon Rise
- P1005 Number Sequence
- P1006 Tick and Tick
- P1007 Quoit Design
- P1008
- P1009 FatMouse' Trade
- P1010
- P1011
- P1012 u Calculate e
- P1013
- P1014
- P1015
- P1016
- P1017
- P1018
- P1019
- P1020 Encoding
- P1021
- P1022
- P1023
- P1024
- P1025
- P1026
- P1027
- P1028
- P1029
- P1030
- P1031
- P1032
- P1033
- P1034
- P1035 Robot Motion
- P1036
- P1037
- P1038
- P1039
- P1040 As Easy As A+B
- P1041
- P1042~1048
- P1049 Climbing Worm
- P1050~1059
- P1060 Leftmost Digit
- P1061 Rightmost Digit
- P1062~1088
- P1089 A+B for Input-Output Practice (I)
- P1090 A+B for Input-Output Practice (II)
- P1091 A+B for Input-Output Practice (III)
- P1092 A+B for Input-Output Practice (IV)
- P1093 A+B for Input-Output Practice (V)
- P1094 A+B for Input-Output Practice (VI)
- P1095
- P1096
- P1097
- P1098
- P1099
- P1106 排序
- P1108 最小公倍数
- P1196 Lowest Bit
- P1234 开门人和关门人
- P1328 IBM Minus One
- P1717 小数化分数2
- P2138 How many prime numbers
- P2161 Primes
- P2317 Nasty Hacks
- P2093 考试排名
- P2095 find your present (2)
- P2111 Saving HDU
- P2550 百步穿杨
- P2561 第二小整数
- P2719 The Seven Percent Solution
- P3188
- 附件 - 合集
- 高精度模板(用vector_int表示,范围正整数)
- [by_041]
- 曾经有一个 序
- 目录
- @[toc]
- Chapter One - 阶段1
- Section One - 基本输入输出
- Section Two - 简单的推公式
- Section Three - 数据结构初步、算法初步
- Chapter Two - 阶段2
- Section One - 数论初步
- 2.1.1.最小公倍数(P1108,LCM)
- 2.1.2.How many prime numbers(P2138)
- 2.1.3.相遇周期(P1713)
- 2.1.4.
- 2.1.5.
- 2.1.6.
- 2.1.7.Leftmost Digit(P1060)
- 2.1.8.小数化分数2(P1717)
- P1000 A + B Problem
- P1001 Sum Problem
- P1002 A + B Problem II
- P1003 Max Sum
- P1004 Let the Balloon Rise
- P1005 Number Sequence
- P1006 Tick and Tick
- P1007 Quoit Design
- P1008
- P1009 FatMouse' Trade
- P1010
- P1011
- P1012 u Calculate e
- P1013
- P1014
- P1015
- P1016
- P1017
- P1018
- P1019
- P1020 Encoding
- P1021
- P1022
- P1023
- P1024
- P1025
- P1026
- P1027
- P1028
- P1029
- P1030
- P1031
- P1032
- P1033
- P1034
- P1035 Robot Motion
- P1036
- P1037
- P1038
- P1039
- P1040 As Easy As A+B
- P1041
- P1042~1048
- P1049 Climbing Worm
- P1050~1059
- P1060 Leftmost Digit
- P1061 Rightmost Digit
- P1062~1088
- P1089 A+B for Input-Output Practice (I)
- P1090 A+B for Input-Output Practice (II)
- P1091 A+B for Input-Output Practice (III)
- P1092 A+B for Input-Output Practice (IV)
- P1093 A+B for Input-Output Practice (V)
- P1094 A+B for Input-Output Practice (VI)
- P1095
- P1096
- P1097
- P1098
- P1099
- P1106 排序
- P1108 最小公倍数
- P1196 Lowest Bit
- P1234 开门人和关门人
- P1328 IBM Minus One
- P1717 小数化分数2
- P2138 How many prime numbers
- P2161 Primes
- P2317 Nasty Hacks
- P2093 考试排名
- P2095 find your present (2)
- P2111 Saving HDU
- P2550 百步穿杨
- P2561 第二小整数
- P2719 The Seven Percent Solution
- P3188
- 高精度模板(用vector_int表示,范围正整数)
ACM Steps
Chapter One - 阶段1
Section One - 基本输入输出
是对经典ACM比赛种的输入输出情况的总结
-
- P1089:多组数据,一组占一行,有两个数,直到文件尾(EOF)结束
while(cin>>a>>b)
或while(~scanf("%d%d",&a,&b))
- P1090:第一行是一个n,后有n组数据,一组占一行,有两个数
- 直接:输入and循环控制
- P1091:多组数据,一组占一行,有两个数,直到
0 0
结束(不处理)while(cin>>a>>b,a!="0"||b!="0")
或while(scanf("%d%d",&a,&b),a||b)
- P1092:多组数据,每组数据一行,每行第一个数是n,后有n个数据,直到
n=0
结束(不处理)while(scanf("%d",&n),n)
- P1093:T组数据,每组数据一行,每行第一个数是n,后有n个数据
- 直接:输入and循环控制
- P1094:多组数据,每组数据一行,每行第一个数是n,后有n个数据,直到文件尾(EOF)结束
while(~scanf("%d",&n))
- P1095:P1089,外加
followed by a blank line
=>每组后面直接加'\n'
!!!(注意)- 每组后直接加
putchar('\n');
- 每组后直接加
- P1096:P1093 ,外加
a blank line between outputs
=>两组有效数据之间加'\n'
!!!(注意)- 除最初一组每组前换行:
for(int cas=1;cas<=T;cas++)
and每组头加if(cas^1)putchar('\n');
- 除最后一组每组后换行,
while(T--)
and每组末尾加if(T)putchar('\n');
- 除最初一组每组前换行:
-
其共有的头是a+b的高精度计算部分:
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; }
Section Two - 简单的推公式
可题中数据直接推得答案的公式题,类比noi的小学奥数分块
- 1.2.1.Climbing Worm(P1049):
- 小学奥数蜗牛爬井,只要注意最后一次攀爬有以下特征:
- 起点高度是u-d的倍数,起点高度加u大于等于井高n- 所以可以得到公式: a n s s = ( ( n − u ) / ( u − d ) + b o o l ( ( n − u ) % ( u − d ) ) ) ∗ 2 + 1 anss=((n-u)/(u-d)+bool((n-u)\%(u-d)))*2+1 anss=((n−u)/(u−d)+bool((n−u)%(u−d)))∗2+1
#include<iostream> using namespace std; int main() { int n,u,d; while(scanf("%d%d%d",&n,&u,&d),n|u|d) { printf("%d\n",((n-u)/(u-d)+bool((n-u)%(u-d)))*2+1); } return 0; }
- 1.2.2.Nasty Hacks(P2317):
- 简单的由题意得,第一个数与第二个数减去第三个数的差相比的大小等情况输出即可
#include<iostream> using namespace std; int main() { int n,r,e,c; scanf("%d",&n); while(n--) { scanf("%d%d%d",&r,&e,&c); c=r-e+c;//表示不加入广告的优势 if(c) if(c>0) puts("do not advertise"); else puts("advertise"); else puts("does not matter"); } return 0; }
-
1.2.3.find your present (2)(P2095):
-
在n个数中找出唯一出现了奇数次的数
- 法1:sort然后扫一遍
- 法2:用map计数,然后将奇数个的输出
- 法3:用链表的方法,奇数次出现就在对应位置新建结点,偶数次就删除现存结点
这里的代码用的是法2
-
#include<iostream> #include<map> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } int main() { int n; map<int,int>counter; map<int,int>::iterator counter_i; while((n=input())) { counter.clear(); for(int i=1;i<=n;i++) counter[input()]++; for(counter_i=counter.begin();counter_i!=counter.end();counter_i++) { if(counter_i->second&1) { printf("%d\n",counter_i->first); break; } } } return 0; }
-
1.2.4.Rightmost Digit(P1061):
- 输出N的N次方结果的最后一位,那么对于底数,只要考虑个位即可,就只有十种情况(0~9),对应的答案就是:
- 0(有1种):都是0
- 1(1):都是1
- 2(4):2、4、8、6、2。。循环
- 3(4):3、9、7、1、3。。循环
- 4(2):4、6、4。。。循环
- 5(1):都是5
- 6(1):都是6
- 7(4):7、9、3、1、7。。循环
- 8(4):8、4、2、6、8。。循环
- 9(2):9、1、9。。循环
- 其中,又因为其指数也是n,所以答案只可能为上方加粗的部分,只有2、3、7、8需要分类
- 注意!! 0 0 = 1 0^0=1 00=1!!!
#include<iostream> using namespace std; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); switch(n%10) { case 0:puts(n?"0":"1");break; case 1:puts("1");break; case 2: switch(n%4) { case 2:puts("4");break; case 0:puts("6");break; } break; case 3: switch(n%4) { case 1:puts("3");break; case 2:puts("9");break; case 3:puts("7");break; case 0:puts("1");break; } break; case 4:puts("6");break; case 5:puts("5");break; case 6:puts("6");break; case 7: switch(n%4) { case 1:puts("7");break; case 2:puts("9");break; case 3:puts("3");break; case 0:puts("1");break; } break; case 8: switch(n%4) { case 2:puts("4");break; case 0:puts("6");break; } break; case 9:puts("9");break; } } return 0; }
- 输出N的N次方结果的最后一位,那么对于底数,只要考虑个位即可,就只有十种情况(0~9),对应的答案就是:
-
1.2.5.The Seven Percent Solution(P2719):
- 在线处理即可,遍历字符串字符,如遇到特殊字符输出转换后结果,否则直接输出当前字符,直到遇到’#'结束
#include<iostream> using namespace std; int main() { char ch; while((ch=getchar())^'#') { if(ch==' ') { putchar('%'); putchar('2'); putchar('0'); continue; } if(ch=='!') { putchar('%'); putchar('2'); putchar('1'); continue; } if(ch=='$') { putchar('%'); putchar('2'); putchar('4'); continue; } if(ch=='%') { putchar('%'); putchar('2'); putchar('5'); continue; } if(ch=='(') { putchar('%'); putchar('2'); putchar('8'); continue; } if(ch==')') { putchar('%'); putchar('2'); putchar('9'); continue; } if(ch=='*') { putchar('%'); putchar('2'); putchar('a'); continue; } putchar(ch); } return 0; }
-
1.2.6.Just A Triangle(P3188):
- 三角形形状判定,如果是直角三角形输出’‘good’’,是等腰三角形输出’‘perfect’’,否则都输出’‘just a triangle’’
- 解法:先将边按长度排序,特判直角and等腰,对每种情况输出anss
#include<iostream> using namespace std; int main() { int n,a,b,c; scanf("%d",&n); while(n--) { scanf("%d%d%d",&a,&b,&c); if(a>b) swap(a,b); if(b>c) swap(b,c); if(a>b) swap(a,b); if(a==b||b==c) { puts("perfect"); continue; } if(a*a+b*b==c*c) { puts("good"); continue; } puts("just a triangle"); } return 0; }
-
1.2.7.IBM Minus One(P1328):
- 字符串转换,将每个字母转化为他的字母表的下一位
- 特别的,将’Z’转化为’A’,然后按照一定格式输出(acm经典输出格式)
Print a blank line after each test case.
#include<iostream> #include<string> using namespace std; int main() { int n; string str; scanf("%d\n",&n); for(int cas=1;cas<=n;cas++) { printf("String #%d\n",cas); cin>>str; for(auto it:str) putchar(it^'Z'?it+1:'A'); putchar('\n'); putchar('\n'); } return 0; }
-
1.2.8.Lowest Bit(P1196):
- 法1:输入一个十进制数,输出将其转化为二进制数后最低位的1的位置
anss=1;while(n&1) {anss++;n>>=1;}anss=1<<anss;
- 法2:直接有取这一位的公式:
(~n+1)\&n
#include<iostream> using namespace std; int main() { int n; while(scanf("%d",&n),n) { printf("%d\n",(~n+1)&n); } return 0; }
- 法1:输入一个十进制数,输出将其转化为二进制数后最低位的1的位置
Section Three - 数据结构初步、算法初步
**数据结构初步:**熟练运用STL、struct(class)、字符串处理
**算法初步:**排序、贪心
-
1.3.1.FatMouse’ Trade(P1009):
- 贪心,优先选择交换收获效率最高的房间内的JavaBean即可
#include<iostream> #include<vector> #include<algorithm> using namespace std; struct room_ { double j,f; room_(){} room_(int a,int b): j(a),f(b){} double rate() {return j/f;} room_ input() { scanf("%lf%lf",&j,&f); return *this; } }; bool operator<(room_ a,room_ b) {return a.rate()<b.rate();} int main() { double n,m,anss; vector<room_>v; while(scanf("%lf%lf",&m,&n),n!=-1||m!=-1) { v.clear(); anss=0; for(int i=0;i<n;i++) v.push_back(room_().input()); sort(v.begin(),v.end()); // for(int i=0;i<n;i++) // cout<<v[i].j<<'\t'<<v[i].f<<endl; while(m&&!v.empty()) { // cout<<v.back().j<<'\t'<<v.back().f<<endl; if(m>=v.back().f) { anss+=v.back().j; m-=v.back().f; } else { anss+=v.back().j*m/v.back().f; break; } v.pop_back(); } printf("%.3lf\n",anss); } return 0; }
-
1.3.2.百步穿杨(P2550):
- 用**
pair<int,int>
**储存一种箭的长度和数量 - 按照长度排序,然后按照此顺序输出
#include<iostream> #include<vector> #include<string> #include<algorithm> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } bool cmp(pair<int,int>a,pair<int,int>b) {return a.first<b.first;}//排序方式 void she(int a,int b)//射箭啦啦啦 { string str=">+"; for(int i=a-2;i>0;i--) str+="-"; str+="+>\n"; while(b--) cout<<str; putchar('\n'); } int main() { int T,n; vector<pair<int,int>>v; scanf("%d",&T); while(T--) { scanf("%d",&n); v.clear(); for(int i=0,tem;i<n;i++) tem=input(), //用pair的此处要注意!! v.push_back(pair<int,int>(tem,input())); sort(v.begin(),v.end(),cmp); for(int i=0;i<n;i++) she(v[i].first,v[i].second); // for(auto it:v) //C++11 // she(it.first,it.second); } return 0; }
- 用**
-
1.3.3.开门人和关门人(P1234):
- 使用自定义结构体
struct tim_
,储存时间和其对应的人名 - 遍历一遍,留下第一个时间戳最小的人名,和第二个时间戳最大的人名
#include<iostream> #include<string> using namespace std; struct tim_ { string name; int h,m,s; tim_(){}; tim_(int a,int b,int c): h(a),m(b),s(c){} operator >(tim_ a) { if(h^a.h) return h>a.h; if(m^a.m) return m>a.m; if(s^a.s) return s>a.s; return false; } operator <(tim_ a) { if(h^a.h) return h<a.h; if(m^a.m) return m<a.m; if(s^a.s) return s<a.s; return false; } }ne,op,ed; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); op=tim_(25,0,0); ed=tim_(-1,0,0); while(n--) { cin>>ne.name; scanf("%d:%d:%d",&ne.h,&ne.m,&ne.s); if(ne<op) op=ne; scanf("%d:%d:%d",&ne.h,&ne.m,&ne.s); if(ne>ed) ed=ne; } cout<<op.name<<' '<<ed.name<<endl; } return 0; }
- 使用自定义结构体
-
1.3.4.第二小整数(P2561):
- 就是第二小整数(之前听说有种东西叫:LRU算法)
#include<iostream> using namespace std; int main() { int T,n,val,mi,mii;//最小数mi,第二小数mii scanf("%d",&T); while(T--) { scanf("%d",&n); mi=mii=0x7fffffff; while(n--) { scanf("%d",&val); if(val<=mi) { mii=mi; mi=val; continue; } if(val<mii) { mii=val; } } printf("%d\n",mii); } return 0; }
-
1.3.5.排序(P1106):
- 一种简单的做法是字符串扫描处理,我这里尝试的是用在线处理的方式解决
#include<iostream> #include<queue> using namespace std; char ch;//ch还未处理的下一个字符 int tin_res=0; char input_5()//输入合法的数字 { while(ch<'0'||ch>'9'||ch=='5') ch=getchar(); tin_res=ch-'0'; while((ch=getchar())>='0'&&ch<='9'&&ch!='5') tin_res=(tin_res<<1)+(tin_res<<3)+ch-'0'; return ch; } #define tin_number 1 //输入成功 #define tin_endl 2 //行末 #define tin_endflie 3 //文件结束 int try_input()//尝试输入,并且返回输入结果 { while(ch=='5') ch=getchar(); if(ch=='\n') { ch=getchar(); return tin_endl; } if(ch==EOF) return tin_endflie; input_5(); return tin_number; } priority_queue<int,vector<int>,greater<int>>anss; void output()//输出并且清空现在的优先队列(已经存入的数) { while(!anss.empty()) { printf("%d",anss.top()); anss.pop(); if(!anss.empty()) putchar(' '); } return; } int main() { ch=getchar(); while(1) { switch(try_input()) { case tin_number: // cout<<tin_res<<endl; anss.push(tin_res); break; case tin_endl: // cout<<"[\\n]"<<endl; output(); putchar('\n'); break; case tin_endflie: // cout<<"[end]"<<endl; output(); return 0; } } return 0; }
-
1.3.6.考试排名(P2093):
- 按照题意进行字符串处理得到各选手的数据再按要求排序即可
#include<iostream> #include<string> #include<vector> #include<algorithm> using namespace std; struct gamer_ { string name; int accept,penalty; gamer_(): name(""),accept(0),penalty(0){} void output() { // cout<<name<<'\t'<<accept<<'\t'<<penalty<<endl; printf("%-10s %2d %4d\n",name.c_str(),accept,penalty); return; } operator < (gamer_ a) { if(accept^a.accept) return accept>a.accept; if(penalty^a.penalty) return penalty<a.penalty; return name<a.name; } }; int main() { int n,m,player=-1; vector<gamer_>v; string str; scanf("%d%d\n",&n,&m); while(v.push_back(gamer_()),cin>>v[++player].name) { for(int prb=1,j,jj,temp;prb<=n;prb++) { cin>>str; if(str[0]<='0'||str[0]>'9') continue; v[player].accept++; for(temp=j=0,jj=str.size();str[j]>='0'&&str[j]<='9'&&j<jj;j++) temp=(temp<<1)+(temp<<3)+str[j]-'0'; v[player].penalty+=temp; // cerr<<str<<"\t"<<temp<<'\t'; temp=0; if(str[j]=='(') for(j++;str[j]^')';j++) temp=(temp<<1)+(temp<<3)+str[j]-'0'; v[player].penalty+=temp*m; // cerr<<'('<<temp<<')'<<endl; } } v.pop_back(); sort(v.begin(),v.end()); for(int i=0,ii=v.size();i<ii;i++) v[i].output(); return 0; }
-
1.3.7.Saving HDU(P2111):
- 第一眼以为多重背包,其实是贪心啦,排个序从价值大的开始选就行liao~
#include<iostream> #include<vector> #include<algorithm> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } struct treasure_ { int p,m; treasure_(){} treasure_(int a,int b): p(a),m(b){} treasure_ in() { p=input(); m=input(); return treasure_(p,m); } void output() { cout<<"<treasure_> : "<<p<<'\t'<<m<<endl; return; } }; bool operator<(treasure_ a,treasure_ b) { if(a.p^b.p) return a.p<b.p; return a.m<b.m; } treasure_ operator+(treasure_ a,treasure_ b) { return treasure_(a.p+b.p,a.m+b.m); } int main() { int v,n,anss; vector<treasure_>item; while(scanf("%d",&v),v) { scanf("%d",&n); item.clear(); anss=0; for(int i=0;i<n;i++) item.push_back(treasure_().in()); sort(item.begin(),item.end()); // for(auto it:item) // it.output(); while(v&&!item.empty()) { if(v>=item.back().m) { anss+=item.back().p*item.back().m; v-=item.back().m; } else { anss+=item.back().p*v; v=0; break; } // item.back().output(); // cout<<"after this anss = "<<anss<<endl; item.pop_back(); } printf("%d\n",anss); } return 0; }
-
1.3.8.As Easy As A+B(P1040):
- 就是道裸的排序题
#include<iostream> #include<vector> #include<algorithm> using namespace std; int input() { int ret; scanf("%d",&ret); return ret; } int main() { int T,n; vector<int>v; scanf("%d",&T); for(int cas=1;cas<=T;cas++) { v.clear(); scanf("%d",&n); for(int i=0;i<n;i++) v.push_back(input()); sort(v.begin(),v.end()); for(int i=0;i<n;i++) printf("%d%s",v[i],n-i-1?" ":"\n"); } return 0; }
Chapter Two - 阶段2
Section One - 数论初步
**数论初步:**最大公约数(GCD)、最小公倍数(LCM)、筛质数
2.1.1.最小公倍数(P1108,LCM)
-
最小公倍数(LCM,Least common multiple)、最大公约数(GCD,Greatest common divisor)有以下关系:
L C M ( a , b ) = a ∗ b / G C D ( a , b ) LCM(a,b)=a*b/GCD(a,b) LCM(a,b)=a∗b/GCD(a,b)
-
GCD可由辗转相除法得到
#include<iostream> using namespace std; int gcd(int a,int b) { while(a) { b^=a; a^=b; b^=a; a%=b; } return b; } int main() { int a,b; while(~scanf("%d%d",&a,&b)) { printf("%d\n",a*b/gcd(a,b)); } return 0; }
2.1.2.How many prime numbers(P2138)
- 筛质数、判断
#include<iostream> #include<vector> #include<bitset> using namespace std; #define SIZE_ 46441//ceil(sqrt(2147483648))+100 vector<unsigned int>prime; bitset<SIZE_>isnp; void built_prime() { for(int i=2;i<SIZE_;i++) { if(!isnp[i]) prime.push_back(i); for(auto it:prime) { if(it*i>=SIZE_) break; isnp[it*i]=true; } } // for(auto it:prime) // cout<<it<<endl; return; } bool isp(int a)//Is A a prime? { //如果在遍历范围内特判,不然在下面的循环中会被自己除尽 if(a<SIZE_) return !isnp[a]; for(auto it:prime) if(a%it==0) return false; return true; } int main() { built_prime(); int n,v,anss; while(~scanf("%d",&n)) { anss=0; for(int i=0;i<n;i++) { scanf("%d",&v); anss+=isp(v); } printf("%d\n",anss); } return 0; }
2.1.3.相遇周期(P1713)
- 追击问题and分数处理
- 分析样例数据:
Sample Input: 2 26501/6335 18468/42 29359/11479 15725/19170 [v1 v2] Sample Output: 81570078/7 5431415 [anss] # Sample_1 : anss % v1 = 0 anss % v2 = 0 anss / v1 = 2785590 anss / v2 = 26501 gcd of above2 : 1 # Sample_2 : anss % v1 = 0 anss % v2 = 0 anss / v1 = 2123615 anss / v2 = 6621318 gcd of above2 : 1 # therefore : anss=lcm(v1,v2)//在分数层面
2.1.4.
2.1.5.
2.1.6.
2.1.7.Leftmost Digit(P1060)
-
求 n n n^n nn的最高位数字
-
尝试硬算指数结果,但是就算是快速幂要算出 ( 1 0 5 ) ( 1 0 5 ) {(10^5)}^{(10^5)} (105)(105)都要4.1s
-
但看到指数就要想起它的逆运算求对数,结合科学计数法,有:
∵ 科 学 计 数 法 有 n n = x . . . . . × 1 0 y ∴ l o g 10 n n = n × l o g 10 n = l o g 10 x . . . . . + y ∴ l o g 10 x . . . . . = n × l o g 10 n − y ∵ 其 中 1 ≤ x . . . . . < 10 ∴ l o g 10 x . . . . . < 1 , y = f l o o r ( n × l o g 10 n ) ∴ x = 1 0 l o g 10 x = 1 0 n × l o g 10 n − f l o o r ( n × l o g 10 n ) \because科学计数法有n^n=x._{....}\times10^y\\ \therefore log_{10}{n^n}=n\times log_{10}n=log_{10}x._{....}+y\\ \therefore log_{10}x._{....}=n\times log_{10}n-y\\ \because 其中1\le x._{....}<10\\ \therefore log_{10}x._{....}<1,y=floor(n\times log_{10}n)\\ \therefore x=10^{log_{10}x}=10^{n\times log_{10}n-floor(n\times log_{10}n)} ∵科学计数法有nn=x.....×10y∴log10nn=n×log10n=log10x.....+y∴log10x.....=n×log10n−y∵其中1≤x.....<10∴log10x.....<1,y=floor(n×log10n)∴x=10log10x=10n×log10n−floor(n×log10n)
-
综上所述,我们最终可以得到解题关键:
double temp=n*log(n)/log(10);
double anss=pow(10,temp-floor(temp));
printf("%.0lf\n",floor(anss));
-
事后:结论的式子和欧拉降幂的公式极其相似
#include<bits/stdc++.h> using namespace std; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); double temp=1.*n*log(n)/log(10); int anss=floor(pow(10,temp-floor(temp))); printf("%d\n",anss); } return 0; }
- 类似的,可以用科学计数法表示 n m n^m nm(多组数据,每组占一行,包括两个正整数n、m)
#include<bits/stdc++.h> using namespace std; int main() { int n,m; while(~scanf("%d %d",&n,&m)) { double temp=1.*m*log(n)/log(10); double x=pow(10,temp-floor(temp)); int y=floor(temp); printf("%lf x 10^%d\n",x,y); } return 0; }
2.1.8.小数化分数2(P1717)
- 这时道较为综合的数学基础题,要求我们把 ( 0 , 1 ) (0,1) (0,1)之间的有理小数转化为分数形式(eg.0.086(0123))
- 有限位数的分数形式:化简
有效位数/10^有效位数
(eg. 123 9999 = 41 3333 \frac{123}{9999}=\frac{41}{3333} 9999123=333341) - 循环位数的分数形式:化简
有效位数/有效位数个9
(eg. 86 1000 = 43 500 \frac{86}{1000}=\frac{43}{500} 100086=50043) - 上两步骤注意前导0!!
- 求有限位数的分数形式于循环部分的分数形式和(eg. 41 3333 + 43 500 = a n s s \frac{41}{3333}+\frac{43}{500}=anss 333341+50043=anss)
- 中间可能超过
int
所以数据要用long long
类型噢ii
#include<iostream> #include<string> using namespace std; //把除了main()外的int改为TNT,然后。。【WA to AC的最后一步】 #define TNT long long //最大公约数(GCD,Greatest common divisor) TNT gcd(TNT a,TNT b) { while(a) { a^=b; b^=a; a^=b; a%=b; } return b; } //最小公倍数(LCM,Least common multiple) TNT lcm(TNT a,TNT b) { return a/gcd(a,b)*b; } //约分(Reduction of a fraction) pair<TNT,TNT>red(pair<TNT,TNT>a) { TNT temp=gcd(a.first,a.second); return pair<TNT,TNT>(a.first/temp,a.second/temp); } //the maximum number of the same digits相同位数的最大值(99..9) TNT sd9(TNT a)//same digits of 9s { TNT ret=0; while(a) { ret=(ret<<1)+(ret<<3)+9; a/=10; } return ret; } //10^a TNT pow10(TNT a) { TNT ret=1; while(a--) ret=(ret<<1)+(ret<<3); return ret; } //分数(Fractional)相加 pair<TNT,TNT>frac_plus(pair<TNT,TNT>a,pair<TNT,TNT>b) { TNT temp=lcm(a.second,b.second); return red(pair<TNT,TNT>(a.first*temp/a.second+b.first*temp/b.second,temp)); } int main() { TNT T,pre_a,pre_b,a,b,i;//a:有限部分;b:循环部分;其等于-1(EOF)时不存在 string str; pair<TNT,TNT>pa,pb;//写成分数形式的a,b cin>>T; while(T--) { cin>>str; b=-1; pre_a=pre_b=a=0; for(i=2;str[i]=='0'&&i<(TNT)str.size();i++)pre_a++; for(;str[i]>='0'&&str[i]<='9'&&i<(TNT)str.size();i++) a=(a<<1)+(a<<3)+str[i]-'0'; a=a?a:-1; if(str[i]=='(') { for(i++;str[i]=='0';i++)pre_b++; for(b=0;str[i]>='0'&&str[i]<='9'&&i<(TNT)str.size();i++) b=(b<<1)+(b<<3)+str[i]-'0'; } // cout<<str<<endl // <<"a = "<<a<<'('<<pre_a<<')'<<endl // <<"b = "<<b<<'('<<pre_b<<')'<<endl; if(~a)pa=red(pair<TNT,TNT>(a,(sd9(a)+1)*pow10(pre_a))); else pa=pair<TNT,TNT>(0,1); if(~b)pb=red(pair<TNT,TNT>(b,sd9(b*pow10(pre_b))*pow10(pre_a)*(~a?(sd9(a)+1):1))); else pb=pair<TNT,TNT>(0,1); // 分数形式anss=分数形式pa+分数形式pb; pa=red(frac_plus(pa,pb)); cout<<pa.first<<'/'<<pa.second<<endl; } return 0; }
Problems Set
P1000 A + B Problem
- 这是一道最基础的不定组数数据输入输出练习
#include<iostream> using namespace std; int main() { int a,b; while(~scanf("%d%d",&a,&b)) printf("%d\n",a+b); return 0; }
P1001 Sum Problem
- 这是数学求和公式题
- 万恶的
followed by a blank line
首次出现的地方
#include<iostream> using namespace std; int main() { unsigned int n; while(~scanf("%d",&n)) { printf("%u\n\n",n*(n+1)>>1); } return 0; }
P1002 A + B Problem II
- 这是高精加的模板题
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n; string a,b; scanf("%d",&n); for(int i=1;i<=n;i++) { if(i^1)putchar('\n'); cin>>a>>b; printf("Case %d:\n%s + %s = %s\n",i,a.c_str(),b.c_str(),add(a,b).c_str()); } return 0; }
P1003 Max Sum
- 动规dp,求和最大的序列
- 出现了!同样万恶的
Output a blank line between two cases
!!
#include<iostream> using namespace std; int val[100007]; int main(void) { int T,n,sum,l,r,val_min,nex_l; scanf("%d",&T); for(int cas=1;cas<=T;cas++) { if(cas^1)putchar('\n'); scanf("%d",&n); scanf("%d",val+1); l=r=nex_l=1; sum=val[1]; val_min=0; if(val[1]<val_min) { nex_l=2; val_min=val[1]; } for(int i=2;i<=n;i++) { scanf("%d",val+i); val[i]+=val[i-1]; if(val[i]-val_min>sum) { l=nex_l; r=i; sum=val[i]-val_min; } if(val[i]<val_min) { nex_l=i+1; val_min=val[i]; } } printf("Case %d:\n%d %d %d\n",cas,sum,l,r); // for (int i = 0; i <= n; ++i) // printf("%d ",val[i]); // printf("\n%d\n",val_min); } return 0; }
P1004 Let the Balloon Rise
-
基础容器
map
的使用 -
出现了经典句式:
A test case with N = 0 terminates the input and this test case is not to be processed.
#include<iostream> #include<string> #include<map> using namespace std; map<string,int>counter; map<string,int>::iterator it; int main() { int n,maxx; string str; while(scanf("%d",&n),n) { counter.clear(); for(int i=1;i<=n;i++) { cin>>str; // cout<<str<<endl; counter[str]++; } maxx=0; for(it=counter.begin();it!=counter.end();it++) { if(it->second>maxx) { maxx=it->second; str=it->first; } } cout<<str<<endl; } return 0; }
P1005 Number Sequence
- 看数据 n ≤ 1 0 8 n\leq10^8 n≤108,明显这是一道找规律的题目
- 那么根据题给公式 f ( 1 ) = 1 , f ( 2 ) = 1 , f ( n ) = ( A ∗ f ( n − 1 ) + B ∗ f ( n − 2 ) ) m o d 7 f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7 f(1)=1,f(2)=1,f(n)=(A∗f(n−1)+B∗f(n−2))mod7, f ( n ) f(n) f(n)只与 f ( n − 1 ) f(n-1) f(n−1)和 f ( n − 2 ) f(n-2) f(n−2)有关,且三者都只有 [ 0 , , 6 ] [0,,6] [0,,6]这7种可能的取值
- 简言之, f ( n − 1 ) ∈ [ 0 , , 6 ] , f ( n − 2 ) ∈ [ 0 , , 6 ] , f ( n ) f(n-1)\in[0,,6],f(n-2)\in[0,,6],f(n) f(n−1)∈[0,,6],f(n−2)∈[0,,6],f(n)的决定式可能的情况就只剩 7 × 7 = 49 7\times7=49 7×7=49种了,也就是最多每49个数一个轮回,而且每49个数一定会是一个轮回(可证明噢~)
- 第一种解法:
#include<iostream> using namespace std; int main() { int a,b,n,val_2,val_1,val; while(scanf("%d%d%d",&a,&b,&n),a||b||n) { n%=49; val_2=val_1=val=1; for(int i=3;i<=n;i++) { val=(a*val_1+b*val_2)%7; val_2=val_1; val_1=val; } printf("%d\n",val); } return 0; }
- 第二个解法,找出循环节(注意:不一定会回到开始的 1 , 1 1,1 1,1,不知道为啥这样的写法也是可以A的)
#include<iostream> #include<vector> using namespace std; vector<int>sta; int main() { int a,b,n,i; while(scanf("%d%d%d",&a,&b,&n),a||b||n) { sta.clear(); sta.push_back(1); sta.push_back(1); sta.push_back(1); for(i=3;i<10000;i++) { sta.push_back((a*sta[i-1]+b*sta[i-2])%7); if(sta[i]==1&&sta[i-1]==1) break; } if(i>n) { printf("%d\n",sta[n]); continue; } // for(int i=1;i<(int)sta.size();i++) // cout<<sta[i]<<' '; i-=2; sta[0]=sta[i]; printf("%d\n",sta[n%i]); } return 0; }
P1006 Tick and Tick
- 关键词:时钟上的三根指针关系。画图,首先固定一根时针,然后确定分针的活动范围(时针顺时针逆时针两方向的D°开外),再对选取部分分针可能高兴的位置,放置秒针。。
- 最后得到的。。。
P1007 Quoit Design
P1008
P1009 FatMouse’ Trade
- 【1.3.1】
#include<iostream> #include<vector> #include<algorithm> using namespace std; struct room_ { double j,f; room_(){} room_(int a,int b): j(a),f(b){} double rate() {return j/f;} room_ input() { scanf("%lf%lf",&j,&f); return *this; } }; bool operator<(room_ a,room_ b) {return a.rate()<b.rate();} int main() { double n,m,anss; vector<room_>v; while(scanf("%lf%lf",&m,&n),n!=-1||m!=-1) { v.clear(); anss=0; for(int i=0;i<n;i++) v.push_back(room_().input()); sort(v.begin(),v.end()); // for(int i=0;i<n;i++) // cout<<v[i].j<<'\t'<<v[i].f<<endl; while(m&&!v.empty()) { // cout<<v.back().j<<'\t'<<v.back().f<<endl; if(m>=v.back().f) { anss+=v.back().j; m-=v.back().f; } else { anss+=v.back().j*m/v.back().f; break; } v.pop_back(); } printf("%.3lf\n",anss); } return 0; }
P1010
P1011
P1012 u Calculate e
- 简单输出题,由样例,注意小数点后的位数(从3开始都是保留到第九位)
#include<iostream> using namespace std; int main() { double anss=1; unsigned long long factorial=1; printf("n e\n- -----------\n0 1\n"); for(int i=1;i<=9;i++) { factorial*=i; anss+=1./factorial; printf("%d ",i); if(i<=2) cout<<anss<<endl; else printf("%.9lf\n",anss); } return 0; }
P1013
P1014
P1015
P1016
P1017
P1018
P1019
P1020 Encoding
- 简单的字符串压缩
#include<iostream> #include<string> using namespace std; int main() { int T,i,ii,times; string str; scanf("%d",&T); while(T--) { cin>>str; for(i=0,ii=str.size()-1;i<ii;i++) { if(str[i]==str[i+1]) { times=2; i++; while(str[i]==str[i+1]) { times++; i++; } printf("%d%c",times,str[i-1]); } else { putchar(str[i]); } } putchar('\n'); } return 0; }
P1021
P1022
P1023
P1024
P1025
P1026
P1027
P1028
P1029
P1030
P1031
P1032
- 角谷猜想(冰雹猜想)的一般问题:问在i,j之间的角谷序列(我愿称之为此)长度最长的长度
- 需要注意,i不一定小等于j
#include<bits/stdc++.h> using namespace std; int main() { int i,j,anss,cnt,temp; while(~scanf("%d%d",&i,&j)) { printf("%d %d ",i,j); if(i>j) swap(i,j); anss=0; while(i<=j) { for(cnt=1,temp=i;temp^1;cnt++) temp=(temp&1)?(temp*3+1):(temp>>1); anss=max(anss,cnt); i++; } printf("%d\n",anss); } return 0; }
P1033
P1034
P1035 Robot Motion
- 按照规则走图,可能出现环或者走出迷宫,处理结果即可
#include<bits/stdc++.h> using namespace std; #define pii pair<int,int> #define move_N pii(-1, 0)//^ #define move_S pii( 1, 0)//v #define move_E pii( 0, 1)//> #define move_W pii( 0,-1)//< pii char_to_pii(char ch) { switch(ch) { case 'N': return move_N; case 'S': return move_S; case 'E': return move_E; case 'W': return move_W; } return pii(0,0); } int now_n,now_m; bool now_inside(pii loc) { if(loc.first<1||loc.first>now_n||loc.second<1||loc.second>now_m) return false; return true; } void operator+=(pii&a,pii b) { a.first+=b.first; a.second+=b.second; return; } int main() { int now_start,now_step; vector<string>now_mapp; map<pii,int>now_route; pii now_loc,anss; string str; // //test:(pii)+=(pii) // now_loc=pii(10,10); // now_loc+=pii(1,-1); // cout<<now_loc.first<<endl<<now_loc.second<<endl; // cin>>str; while(scanf("%d%d",&now_n,&now_m),now_n||now_m) { scanf("%d\n",&now_start); now_step=0; now_mapp.clear(); now_mapp.push_back(""); now_loc=pii(1,now_start); now_route.clear(); anss=pii(0,0); for(int i=1;i<=now_n;i++) { cin>>str; now_mapp.push_back(" "+str); } while(now_inside(now_loc)) { now_step++; if(now_route[now_loc])//cycle appearance { anss=pii(now_route[now_loc]-1,now_step-now_route[now_loc]); break; } now_route[now_loc]=now_step; now_loc+=char_to_pii(now_mapp[now_loc.first][now_loc.second]); } if(anss==pii(0,0)) anss=pii(now_step,0); if(anss.second)//cycle { printf("%d step(s) before a loop of %d step(s)\n", anss.first,anss.second); } else//exit { printf("%d step(s) to exit\n",anss.first); } // for(int i=1;i<=now_n;i++,putchar('\n')) // for(int j=1;j<=now_m;j++) // putchar(now_mapp[i][j]); // putchar('\n'); // for(int i=1;i<=now_n;i++,putchar('\n')) // for(int j=1;j<=now_m;j++) // printf("%4d",now_route[pii(i,j)]); // cout<<endl; // cout<<"now_loc : "<<now_loc.first<<"\t"<<now_loc.second<<endl; // cout<<"anss : "<<anss.first<<"\t"<<anss.second<<endl; // cout<<endl<<endl; } return 0; }
P1036
P1037
P1038
P1039
P1040 As Easy As A+B
- 1.3.8
#include<iostream> #include<vector> #include<algorithm> using namespace std; int input() { int ret; scanf("%d",&ret); return ret; } int main() { int T,n; vector<int>v; scanf("%d",&T); for(int cas=1;cas<=T;cas++) { v.clear(); scanf("%d",&n); for(int i=0;i<n;i++) v.push_back(input()); sort(v.begin(),v.end()); for(int i=0;i<n;i++) printf("%d%s",v[i],n-i-1?" ":"\n"); } return 0; }
P1041
P1042~1048
P1049 Climbing Worm
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { int n,u,d; while(scanf("%d%d%d",&n,&u,&d),n|u|d) { printf("%d\n",((n-u)/(u-d)+bool((n-u)%(u-d)))*2+1); } return 0; }
P1050~1059
P1060 Leftmost Digit
- 【2.1.7】
#include<bits/stdc++.h> using namespace std; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); double temp=1.*n*log(n)/log(10); int anss=floor(pow(10,temp-floor(temp))); printf("%d\n",anss); } return 0; }
- 类似的,可以用科学计数法表示 n m n^m nm(多组数据,每组占一行,包括两个正整数n、m)
#include<bits/stdc++.h> using namespace std; int main() { int n,m; while(~scanf("%d %d",&n,&m)) { double temp=1.*m*log(n)/log(10); double x=pow(10,temp-floor(temp)); int y=floor(temp); printf("%lf x 10^%d\n",x,y); } return 0; }
P1061 Rightmost Digit
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); switch(n%10) { case 0:puts(n?"0":"1");break; case 1:puts("1");break; case 2: switch(n%4) { case 2:puts("4");break; case 0:puts("6");break; } break; case 3: switch(n%4) { case 1:puts("3");break; case 2:puts("9");break; case 3:puts("7");break; case 0:puts("1");break; } break; case 4:puts("6");break; case 5:puts("5");break; case 6:puts("6");break; case 7: switch(n%4) { case 1:puts("7");break; case 2:puts("9");break; case 3:puts("3");break; case 0:puts("1");break; } break; case 8: switch(n%4) { case 2:puts("4");break; case 0:puts("6");break; } break; case 9:puts("9");break; } } return 0; }
P1062~1088
P1089 A+B for Input-Output Practice (I)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { string a,b; while(cin>>a>>b) { printf("%s\n",add(a,b).c_str()); } return 0; }
P1090 A+B for Input-Output Practice (II)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n; string a,b; scanf("%d",&n); for(int i=1;i<=n;i++) { cin>>a>>b; printf("%s\n",add(a,b).c_str()); } return 0; }
P1091 A+B for Input-Output Practice (III)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { string a,b; while(cin>>a>>b,a!="0"||b!="0") { printf("%s\n",add(a,b).c_str()); } return 0; }
P1092 A+B for Input-Output Practice (IV)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n; string a,b; while(scanf("%d",&n),n) { cin>>a; for(int i=1;i<n;i++) { cin>>b; a=add(a,b); } printf("%s\n",a.c_str()); } return 0; }
P1093 A+B for Input-Output Practice (V)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n,T; string a,b; scanf("%d",&T); while(T--) { scanf("%d",&n); cin>>a; for(int i=1;i<n;i++) { cin>>b; a=add(a,b); } printf("%s\n",a.c_str()); } return 0; }
P1094 A+B for Input-Output Practice (VI)
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n; string a,b; while(~scanf("%d",&n)) { cin>>a; for(int i=1;i<n;i++) { cin>>b; a=add(a,b); } printf("%s\n",a.c_str()); } return 0; }
P1095
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { string a,b; while(cin>>a>>b) { printf("%s\n\n",add(a,b).c_str()); } return 0; }
P1096
- 详见上方【A-C1-S1】总结
#include<iostream> #include<string> #include<algorithm> using namespace std; string add(string a,string b) { if(a.size()<b.size())swap(a,b); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int i,ii=b.size(); for(i=0;i<ii;i++) { a[i]+=b[i]-'0'; if(a[i]>'9') { a[i]-=10; a[i+1]++; } } for(ii=a.size();i<ii;i++) { if(a[i]>'9') { a[i]-=10; a[i+1]++; } } if(a[ii]==1) a+='1'; reverse(a.begin(),a.end()); return a; } int main() { int n,T; string a,b; scanf("%d",&T); // while(T--) //法1 for(int cas=1;cas<=T;cas++) //法2 { if(cas^1)putchar('\n'); //法2 scanf("%d",&n); cin>>a; for(int i=1;i<n;i++) { cin>>b; a=add(a,b); } printf("%s\n",a.c_str()); // if(T)putchar('\n'); //法1 } return 0; }
P1097
P1098
P1099
P1106 排序
- 详见上方【A-C1-S3】总结
#include<iostream> #include<queue> using namespace std; char ch;//ch还未处理的下一个字符 int tin_res=0; char input_5()//输入合法的数字 { while(ch<'0'||ch>'9'||ch=='5') ch=getchar(); tin_res=ch-'0'; while((ch=getchar())>='0'&&ch<='9'&&ch!='5') tin_res=(tin_res<<1)+(tin_res<<3)+ch-'0'; return ch; } #define tin_number 1 //输入成功 #define tin_endl 2 //行末 #define tin_endflie 3 //文件结束 int try_input()//尝试输入,并且返回输入结果 { while(ch=='5') ch=getchar(); if(ch=='\n') { ch=getchar(); return tin_endl; } if(ch==EOF) return tin_endflie; input_5(); return tin_number; } priority_queue<int,vector<int>,greater<int>>anss; void output()//输出并且清空现在的优先队列(已经存入的数) { while(!anss.empty()) { printf("%d",anss.top()); anss.pop(); if(!anss.empty()) putchar(' '); } return; } int main() { ch=getchar(); while(1) { switch(try_input()) { case tin_number: // cout<<tin_res<<endl; anss.push(tin_res); break; case tin_endl: // cout<<"[\\n]"<<endl; output(); putchar('\n'); break; case tin_endflie: // cout<<"[end]"<<endl; output(); return 0; } } return 0; }
P1108 最小公倍数
- 2.1.1.
#include<iostream> using namespace std; int gcd(int a,int b) { while(a) { b^=a; a^=b; b^=a; a%=b; } return b; } int main() { int a,b; while(~scanf("%d%d",&a,&b)) { printf("%d\n",a*b/gcd(a,b)); } return 0; }
P1196 Lowest Bit
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { int n; while(scanf("%d",&n),n) { printf("%d\n",(~n+1)&n); } return 0; }
P1234 开门人和关门人
- 详见上方【A-C1-S3】总结
#include<iostream> #include<string> using namespace std; struct tim_ { string name; int h,m,s; tim_(){}; tim_(int a,int b,int c): h(a),m(b),s(c){} operator >(tim_ a) { if(h^a.h) return h>a.h; if(m^a.m) return m>a.m; if(s^a.s) return s>a.s; return false; } operator <(tim_ a) { if(h^a.h) return h<a.h; if(m^a.m) return m<a.m; if(s^a.s) return s<a.s; return false; } }ne,op,ed; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); op=tim_(25,0,0); ed=tim_(-1,0,0); while(n--) { cin>>ne.name; scanf("%d:%d:%d",&ne.h,&ne.m,&ne.s); if(ne<op) op=ne; scanf("%d:%d:%d",&ne.h,&ne.m,&ne.s); if(ne>ed) ed=ne; } cout<<op.name<<' '<<ed.name<<endl; } return 0; }
P1328 IBM Minus One
- 详见上方【A-C1-S2】总结
#include<iostream> #include<string> using namespace std; int main() { int n; string str; scanf("%d\n",&n); for(int cas=1;cas<=n;cas++) { printf("String #%d\n",cas); cin>>str; for(auto it:str) putchar(it^'Z'?it+1:'A'); putchar('\n'); putchar('\n'); } return 0; }
P1717 小数化分数2
- 【2.1.8】
#include<iostream> #include<string> using namespace std; //把除了main()外的int改为TNT #define TNT long long //最大公约数(GCD,Greatest common divisor) TNT gcd(TNT a,TNT b) { while(a) { a^=b; b^=a; a^=b; a%=b; } return b; } //最小公倍数(LCM,Least common multiple) TNT lcm(TNT a,TNT b) { return a/gcd(a,b)*b; } //约分(Reduction of a fraction) pair<TNT,TNT>red(pair<TNT,TNT>a) { TNT temp=gcd(a.first,a.second); return pair<TNT,TNT>(a.first/temp,a.second/temp); } //the maximum number of the same digits相同位数的最大值(99..9) TNT sd9(TNT a)//same digits of 9s { TNT ret=0; while(a) { ret=(ret<<1)+(ret<<3)+9; a/=10; } return ret; } //10^a TNT pow10(TNT a) { TNT ret=1; while(a--) ret=(ret<<1)+(ret<<3); return ret; } //分数(Fractional)相加 pair<TNT,TNT>frac_plus(pair<TNT,TNT>a,pair<TNT,TNT>b) { TNT temp=lcm(a.second,b.second); return red(pair<TNT,TNT>(a.first*temp/a.second+b.first*temp/b.second,temp)); } int main() { TNT T,pre_a,pre_b,a,b,i;//a:有限部分;b:循环部分;其等于-1(EOF)时不存在 string str; pair<TNT,TNT>pa,pb;//写成分数形式的a,b cin>>T; while(T--) { cin>>str; b=-1; pre_a=pre_b=a=0; for(i=2;str[i]=='0'&&i<(TNT)str.size();i++)pre_a++; for(;str[i]>='0'&&str[i]<='9'&&i<(TNT)str.size();i++) a=(a<<1)+(a<<3)+str[i]-'0'; a=a?a:-1; if(str[i]=='(') { for(i++;str[i]=='0';i++)pre_b++; for(b=0;str[i]>='0'&&str[i]<='9'&&i<(TNT)str.size();i++) b=(b<<1)+(b<<3)+str[i]-'0'; } // cout<<str<<endl // <<"a = "<<a<<'('<<pre_a<<')'<<endl // <<"b = "<<b<<'('<<pre_b<<')'<<endl; if(~a)pa=red(pair<TNT,TNT>(a,(sd9(a)+1)*pow10(pre_a))); else pa=pair<TNT,TNT>(0,1); if(~b)pb=red(pair<TNT,TNT>(b,sd9(b*pow10(pre_b))*pow10(pre_a)*(~a?(sd9(a)+1):1))); else pb=pair<TNT,TNT>(0,1); // 分数形式anss=分数形式pa+分数形式pb; pa=red(frac_plus(pa,pb)); cout<<pa.first<<'/'<<pa.second<<endl; } return 0; }
P2138 How many prime numbers
- 【2.1.2】
#include<iostream> #include<vector> #include<bitset> using namespace std; #define SIZE_ 46441//ceil(sqrt(2147483648))+100 vector<unsigned int>prime; bitset<SIZE_>isnp; void built_prime() { for(int i=2;i<SIZE_;i++) { if(!isnp[i]) prime.push_back(i); for(auto it:prime) { if(it*i>=SIZE_) break; isnp[it*i]=true; } } // for(auto it:prime) // cout<<it<<endl; return; } bool isp(int a)//Is A a prime? { //如果在遍历范围内特判,不然在下面的循环中会被自己除尽 if(a<SIZE_) return !isnp[a]; for(auto it:prime) if(a%it==0) return false; return true; } int main() { built_prime(); int n,v,anss; while(~scanf("%d",&n)) { anss=0; for(int i=0;i<n;i++) { scanf("%d",&v); anss+=isp(v); } printf("%d\n",anss); } return 0; }
P2161 Primes
- 本质时筛质数,但是要注意该题的题设(1、2在本题不是质数;输入小等于0时就GG)
#include<bits/stdc++.h> using namespace std; #define DATA_MAX 16007 vector<int>prime_table; bitset<DATA_MAX>prime_isnp; void prime_built() { for(int i=2;i<DATA_MAX;i++) { if(!prime_isnp[i]) prime_table.push_back(i); for(auto it:prime_table) if(i*it<DATA_MAX) prime_isnp[i*it]=true; } prime_isnp[1]=true; return; } int main() { prime_built(); prime_isnp[2]=true; int n,cas=1; while(scanf("%d",&n),n>0) printf("%d: %s\n",cas++,prime_isnp[n]?"no":"yes"); return 0; }
P2317 Nasty Hacks
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { int n,r,e,c; scanf("%d",&n); while(n--) { scanf("%d%d%d",&r,&e,&c); c=r-e+c;//表示不加入广告的优势 if(c) if(c>0) puts("do not advertise"); else puts("advertise"); else puts("does not matter"); } return 0; }
P2093 考试排名
- 【1.3.6】
#include<iostream> #include<string> #include<vector> #include<algorithm> using namespace std; struct gamer_ { string name; int accept,penalty; gamer_(): name(""),accept(0),penalty(0){} void output() { // cout<<name<<'\t'<<accept<<'\t'<<penalty<<endl; printf("%-10s %2d %4d\n",name.c_str(),accept,penalty); return; } operator < (gamer_ a) { if(accept^a.accept) return accept>a.accept; if(penalty^a.penalty) return penalty<a.penalty; return name<a.name; } }; int main() { int n,m,player=-1; vector<gamer_>v; string str; scanf("%d%d\n",&n,&m); while(v.push_back(gamer_()),cin>>v[++player].name) { for(int prb=1,j,jj,temp;prb<=n;prb++) { cin>>str; if(str[0]<='0'||str[0]>'9') continue; v[player].accept++; for(temp=j=0,jj=str.size();str[j]>='0'&&str[j]<='9'&&j<jj;j++) temp=(temp<<1)+(temp<<3)+str[j]-'0'; v[player].penalty+=temp; // cerr<<str<<"\t"<<temp<<'\t'; temp=0; if(str[j]=='(') for(j++;str[j]^')';j++) temp=(temp<<1)+(temp<<3)+str[j]-'0'; v[player].penalty+=temp*m; // cerr<<'('<<temp<<')'<<endl; } } v.pop_back(); sort(v.begin(),v.end()); for(int i=0,ii=v.size();i<ii;i++) v[i].output(); return 0; }
P2095 find your present (2)
- 详见上方【A-C1-S2】总结
#include<iostream> #include<map> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } int main() { int n; map<int,int>counter; map<int,int>::iterator counter_i; while((n=input())) { counter.clear(); for(int i=1;i<=n;i++) counter[input()]++; for(counter_i=counter.begin();counter_i!=counter.end();counter_i++) { if(counter_i->second&1) { printf("%d\n",counter_i->first); break; } } } return 0; }
P2111 Saving HDU
- 【1.3.7】
#include<iostream> #include<vector> #include<algorithm> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } struct treasure_ { int p,m; treasure_(){} treasure_(int a,int b): p(a),m(b){} treasure_ in() { p=input(); m=input(); return treasure_(p,m); } void output() { cout<<"<treasure_> : "<<p<<'\t'<<m<<endl; return; } }; bool operator<(treasure_ a,treasure_ b) { if(a.p^b.p) return a.p<b.p; return a.m<b.m; } treasure_ operator+(treasure_ a,treasure_ b) { return treasure_(a.p+b.p,a.m+b.m); } int main() { int v,n,anss; vector<treasure_>item; while(scanf("%d",&v),v) { scanf("%d",&n); item.clear(); anss=0; for(int i=0;i<n;i++) item.push_back(treasure_().in()); sort(item.begin(),item.end()); // for(auto it:item) // it.output(); while(v&&!item.empty()) { if(v>=item.back().m) { anss+=item.back().p*item.back().m; v-=item.back().m; } else { anss+=item.back().p*v; v=0; break; } // item.back().output(); // cout<<"after this anss = "<<anss<<endl; item.pop_back(); } printf("%d\n",anss); } return 0; }
P2550 百步穿杨
- 详见上方【A-C1-S3】总结
#include<iostream> #include<vector> #include<string> #include<algorithm> using namespace std; int input() { char ch; while((ch=getchar())<'0'||ch>'9'); int ret=ch-'0'; while((ch=getchar())>='0'&&ch<='9') ret=(ret<<1)+(ret<<3)+ch-'0'; return ret; } bool cmp(pair<int,int>a,pair<int,int>b) {return a.first<b.first;} void she(int a,int b) { string str=">+"; for(int i=a-2;i>0;i--) str+="-"; str+="+>\n"; while(b--) cout<<str; putchar('\n'); } vector<pair<int,int>>v; int main() { int T,n; scanf("%d",&T); while(T--) { scanf("%d",&n); v.clear(); for(int i=0,tem;i<n;i++) tem=input(), v.push_back(pair<int,int>(tem,input())); sort(v.begin(),v.end(),cmp); // for(int i=0;i<n;i++) //Sorted Check // cout<<v[i].first<<' '<<v[i].second<<endl; for(int i=0;i<n;i++) she(v[i].first,v[i].second); // for(auto it:v) //C++11 // she(it.first,it.second); } return 0; }
P2561 第二小整数
- 详见上方【A-C1-S3】总结
#include<iostream> using namespace std; int main() { int T,n,val,mi,mii;//最小数mi,第二小数mii scanf("%d",&T); while(T--) { scanf("%d",&n); mi=mii=0x7fffffff; while(n--) { scanf("%d",&val); if(val<=mi) { mii=mi; mi=val; continue; } if(val<mii) { mii=val; } } printf("%d\n",mii); } return 0; }
P2719 The Seven Percent Solution
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { char ch; while((ch=getchar())^'#') { if(ch==' ') { putchar('%'); putchar('2'); putchar('0'); continue; } if(ch=='!') { putchar('%'); putchar('2'); putchar('1'); continue; } if(ch=='$') { putchar('%'); putchar('2'); putchar('4'); continue; } if(ch=='%') { putchar('%'); putchar('2'); putchar('5'); continue; } if(ch=='(') { putchar('%'); putchar('2'); putchar('8'); continue; } if(ch==')') { putchar('%'); putchar('2'); putchar('9'); continue; } if(ch=='*') { putchar('%'); putchar('2'); putchar('a'); continue; } putchar(ch); } return 0; }
P3188
- 详见上方【A-C1-S2】总结
#include<iostream> using namespace std; int main() { int n,a,b,c; scanf("%d",&n); while(n--) { scanf("%d%d%d",&a,&b,&c); if(a>b) swap(a,b); if(b>c) swap(b,c); if(a>b) swap(a,b); if(a==b||b==c) { puts("perfect"); continue; } if(a*a+b*b==c*c) { puts("good"); continue; } puts("just a triangle"); } return 0; }
附件 - 合集
高精度模板(用vector_int表示,范围正整数)
/* * 高精度 用vector_int表示正整数 * * * 储存方式: * BigNum_ val; * val[0]=数字长度; * val[1]=个位数字; * val[2]=十位数字; * ...... * val[val[0]]=最高位数字; * * * 已完成: * 转换: BigNum_trans (val) * 转换: BigNum_trans(val,ret) * 转换: BigNum_trans (str) * 转换: BigNum_trans(str,ret) * 转换: BigNum_trans(val,str) * 输入:++ BigNum_input (val) * 输出:-- BigNum_output (val) * 比较:>=,<=,>,< * 加法:+ BigNum_addition (a,b,ret) * 减法:- BigNum_subtract (a,b,ret) * 乘法:* BigNum_multiply (a,b,ret) * 次方:^ BigNum_power (a,b,ret) * 阶乘: BigNum_factorial(val,ret) * 位数: BigNum_resize (ret,val)//十进制位运算 * 除法:/ BigNum_division (a,b,ret) * 取余:% BigNum_modulo (a,b,ret) * 大约: BigNum_gcd (a,b) * 小倍: BigNum_lcm (a,b) * 大约: BigNum_gcd (a,b,ret) * 小倍: BigNum_lcm (a,b,ret) * * 未完成: * */ #include<bits/stdc++.h> using namespace std; #define BigNum_ vector<int> const BigNum_ BigNum_0 {1, 0}; const BigNum_ BigNum_1 {1, 1}; const BigNum_ BigNum_ERR{1,-1}; BigNum_ BigNum_trans(int val) { BigNum_ ret; for(ret.push_back(0);val;ret[0]++) { ret.push_back(val%10); val/=10; } return ret; } void BigNum_trans(int val,BigNum_&ret) { ret.clear(); for(ret.push_back(0);val;ret[0]++) { ret.push_back(val%10); val/=10; } return; } BigNum_ BigNum_trans(string str) { BigNum_ val; for(auto it:str) val.push_back(it-'0'); val.push_back(str.size()); reverse(val.begin(),val.end()); return val; } void BigNum_trans(string str,BigNum_&ret) { ret.clear(); for(auto it:str) ret.push_back(it-'0'); ret.push_back(str.size()); reverse(ret.begin(),ret.end()); return; } void BigNum_trans(BigNum_ val,string&str) { str.clear(); for(int i=val[0];i;i--) str+=(val[i]+'0'); return; } void BigNum_input(BigNum_&val) { val.clear(); string str; cin>>str; for(auto it:str) val.push_back(it-'0'); val.push_back(str.size()); reverse(val.begin(),val.end()); return; } void operator++(BigNum_&val) { val.clear(); string str; cin>>str; for(auto it:str) val.push_back(it-'0'); val.push_back(str.size()); reverse(val.begin(),val.end()); return; } void operator++(BigNum_&val,int) { val.clear(); string str; cin>>str; for(auto it:str) val.push_back(it-'0'); val.push_back(str.size()); reverse(val.begin(),val.end()); return; } void BigNum_output(BigNum_ val) { for(int i=val[0];i;i--) putchar(val[i]+'0'); return; } void operator--(BigNum_ val) { for(int i=val[0];i;i--) putchar(val[i]+'0'); return; } void operator--(BigNum_ val,int) { for(int i=val[0];i;i--) putchar(val[i]+'0'); return; } bool operator>=(BigNum_&val_a,BigNum_&val_b) { if(val_a[0]^val_b[0]) return val_a[0]>val_b[0]; for(int i=val_a[0];i;i--) if(val_a[i]^val_b[i]) return val_a[i]>val_b[i]; return true; } bool operator<=(BigNum_&val_a,BigNum_&val_b) { if(val_a[0]^val_b[0]) return val_a[0]<val_b[0]; for(int i=val_a[0];i;i--) if(val_a[i]^val_b[i]) return val_a[i]<val_b[i]; return true; } bool operator>(BigNum_&val_a,BigNum_&val_b) { if(val_a[0]^val_b[0]) return val_a[0]>val_b[0]; for(int i=val_a[0];i;i--) if(val_a[i]^val_b[i]) return val_a[i]>val_b[i]; return false; } bool operator<(BigNum_&val_a,BigNum_&val_b) { if(val_a[0]^val_b[0]) return val_a[0]<val_b[0]; for(int i=val_a[0];i;i--) if(val_a[i]^val_b[i]) return val_a[i]<val_b[i]; return false; } void BigNum_addition(BigNum_&val_a,BigNum_&val_b,BigNum_&ret) { ret.clear(); ret.push_back(0); int i,ii=min(val_a[0],val_b[0]),this_dig,next_dig=0; for(i=1;i<=ii;i++) { this_dig=val_a[i]+val_b[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } for(ii=val_a[0];i<=ii;i++) { this_dig=val_a[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } for(ii=val_b[0];i<=ii;i++) { this_dig=val_b[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } if(next_dig) { ret.push_back(next_dig); i++; } ret[0]=i-1; return; } BigNum_ operator+(BigNum_ val_a,BigNum_ val_b) { BigNum_ ret; ret.push_back(0); int i,ii=min(val_a[0],val_b[0]),this_dig,next_dig=0; for(i=1;i<=ii;i++) { this_dig=val_a[i]+val_b[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } for(ii=val_a[0];i<=ii;i++) { this_dig=val_a[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } for(ii=val_b[0];i<=ii;i++) { this_dig=val_b[i]+next_dig; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } if(next_dig) { ret.push_back(next_dig); i++; } ret[0]=i-1; return ret; } void BigNum_subtract(BigNum_&val_a,BigNum_&val_b,BigNum_&ret) { if(val_a<val_b) { BigNum_subtract(val_b,val_a,ret); return; } ret=val_a; for(int i=val_b[0],j;i;i--) { ret[i]-=val_b[i]; if(ret[i]<0) { for(j=i+1;!ret[j];j++) ret[j]=9; ret[j]--; ret[i]+=10; } } while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return; } BigNum_ operator-(BigNum_ val_a,BigNum_ val_b) { if(val_a<val_b) return val_b-val_a; BigNum_ ret; ret=val_a; for(int i=val_b[0],j;i;i--) { ret[i]-=val_b[i]; if(ret[i]<0) { for(j=i+1;!ret[j];j++) ret[j]=9; ret[j]--; ret[i]+=10; } } while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return ret; } void BigNum_multiply(BigNum_&val_a,BigNum_&val_b,BigNum_&ret) { ret.clear(); ret.push_back(val_a[0]+val_b[0]); for(int i=1,ii=ret[0],this_dig,next_dig=0;i<=ii;i++) { this_dig=next_dig; for(int j=1;j<=i;j++) if(val_a[0]>=j&&val_b[0]>=i-j+1) this_dig+=val_a[j]*val_b[i-j+1]; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } ret[0]-=!ret[ret[0]]; return; } BigNum_ operator*(BigNum_ val_a,BigNum_ val_b) { BigNum_ ret; ret.push_back(val_a[0]+val_b[0]); for(int i=1,ii=ret[0],this_dig,next_dig=0;i<=ii;i++) { this_dig=next_dig; for(int j=1;j<=i;j++) if(val_a[0]>=j&&val_b[0]>=i-j+1) this_dig+=val_a[j]*val_b[i-j+1]; next_dig=this_dig/10; this_dig%=10; ret.push_back(this_dig); } ret[0]-=!ret[ret[0]]; return ret; } void BigNum_power(BigNum_&val_a,BigNum_&val_b,BigNum_&ret) { if(val_b[0]==1) { if(val_b[1]==0) { ret=BigNum_1; return; } if(val_b[1]==1) { ret=val_a; return; } } if(val_a[0]==1) if(val_a[1]==1||!val_a[1]) { ret=val_a; return; } BigNum_ half_b,double_a; int this_dig,next_dig=0; half_b=val_b; for(int i=half_b[0];i;i--) { this_dig=next_dig; next_dig=half_b[i]&1?5:0; half_b[i]=half_b[i]/2+this_dig; } while(!half_b[half_b[0]]) half_b[0]--; double_a=val_a*val_a; if(val_b[1]&1) { // ret=(double_a^half_b)*val_a; BigNum_ temp; BigNum_power(double_a,half_b,temp); BigNum_multiply(temp,val_a,ret); } else { // ret=double_a^half_b; BigNum_power(double_a,half_b,ret); } return; } BigNum_ operator^(BigNum_ val_a,BigNum_ val_b) { if(val_b[0]==1) { if(val_b[1]==0) return BigNum_1; if(val_b[1]==1) return val_a; } if(val_a[0]==1) if(val_a[1]==1||!val_a[1]) return val_a; BigNum_ half_b,double_a; int this_dig,next_dig=0; half_b=val_b; for(int i=half_b[0];i;i--) { this_dig=next_dig; next_dig=half_b[i]&1?5:0; half_b[i]=half_b[i]/2+this_dig; } while(!half_b[half_b[0]]) half_b[0]--; double_a=val_a*val_a; if(val_b[1]&1) return (double_a^half_b)*val_a; else return double_a^half_b; } void BigNum_factorial(BigNum_&val,BigNum_&ret) { ret=BigNum_1; for(BigNum_ i={1,1};i<=val;i=i+BigNum_1) ret=ret*i; return; } void BigNum_resize(BigNum_&ret,int val) { reverse(ret.begin(),ret.end()); ret.pop_back(); ret.resize(val); ret.push_back(val); reverse(ret.begin(),ret.end()); return; } void BigNum_division(BigNum_ val_a,BigNum_&val_b,BigNum_&ret) { if(val_a<val_b) { ret=BigNum_ {1,0}; return; } if(val_b==BigNum_0) { ret=BigNum_ERR; return; } ret.clear(); ret.push_back(val_a[0]-val_b[0]+1); BigNum_resize(ret,ret[0]); for(int i=val_a[0],ii=val_b[0];i>=ii;i--) { BigNum_resize(val_b,i); while(val_a>=val_b) { val_a=val_a-val_b; ret[i-ii+1]++; } } while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return; } BigNum_ operator/(BigNum_ val_a,BigNum_ val_b) { if(val_a<val_b) return BigNum_ {1,0}; if(val_b==BigNum_0) return BigNum_ERR; BigNum_ ret; ret.push_back(val_a[0]-val_b[0]+1); BigNum_resize(ret,ret[0]); for(int i=val_a[0],ii=val_b[0];i>=ii;i--) { BigNum_resize(val_b,i); while(val_a>=val_b) { val_a=val_a-val_b; ret[i-ii+1]++; } } while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return ret; } void BigNum_modulo(BigNum_ val_a,BigNum_&val_b,BigNum_&ret) { if(val_a<val_b) { ret=val_a; return; } if(val_b==BigNum_0) { ret=BigNum_ERR; return; } BigNum_resize(ret,ret[0]); for(int i=val_a[0],ii=val_b[0];i>=ii;i--) { BigNum_resize(val_b,i); while(val_a>=val_b) val_a=val_a-val_b; } ret=val_a; while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return; } BigNum_ operator%(BigNum_ val_a,BigNum_ val_b) { if(val_a<val_b) return val_a; if(val_b==BigNum_0) return BigNum_ERR; BigNum_ ret; for(int i=val_a[0],ii=val_b[0];i>=ii;i--) { BigNum_resize(val_b,i); while(val_a>=val_b) val_a=val_a-val_b; } ret=val_a; while(!ret[ret[0]]&&ret[0]>1) ret[0]--; ret.resize(ret[0]+1); return ret; } BigNum_ BigNum_gcd(BigNum_ val_a,BigNum_ val_b) { while(val_a>BigNum_0) { swap(val_a,val_b); val_a=val_a%val_b; } return val_b; } void BigNum_gcd(BigNum_ val_a,BigNum_ val_b,BigNum_&ret) { while(val_a>BigNum_0) { swap(val_a,val_b); val_a=val_a%val_b; } ret=val_b; return; } BigNum_ BigNum_lcm(BigNum_ val_a,BigNum_ val_b) { return val_a*val_b/BigNum_gcd(val_a,val_b); } void BigNum_lcm(BigNum_&val_a,BigNum_&val_b,BigNum_&ret) { ret=val_a*val_b/BigNum_gcd(val_a,val_b); return; } int main() { // //test_used: // BigNum_ a,b,c; // (BigNum_trans(321))--;cout<<endl<<endl; //(BigNum_trans("321"))--;cout<<endl<<endl; // while(true) // { // a++; // b++; // BigNum_input(a); // BigNum_input(b); // BigNum_output(a); // BigNum_output(b); // cout<<"(a>b)="<<(a>b)<<endl; // cout<<"(a<b)="<<(a<b)<<endl; // cout<<"(a>=b)="<<(a>=b)<<endl; // cout<<"(a<=b)="<<(a<=b)<<endl; // a--; // if(a==b) // cout<<"="; // if(a<b) // cout<<"<"; // if(a>b) // cout<<">"; // b--;cout<<endl; // // c=a+b; // BigNum_addition(a,b,c); // a--;cout<<"+";b--;cout<<"=";c--;cout<<endl; // // c=a-b; // BigNum_subtract(a,b,c); // a--;cout<<"-";b--;cout<<"=";c--;cout<<endl; // // c=a*b; // BigNum_multiply(a,b,c); // a--;cout<<"x";b--;cout<<"=";c--;cout<<endl; // // c=a/b // // c=a^b; // BigNum_power(a,b,c); // a--;cout<<"^";b--;cout<<"=";c--;cout<<endl; // // c=a!; // BigNum_factorial(a,c); // a--;cout<<"!=";c--;cout<<endl; // // c=a/b; // BigNum_division(a,b,c); // a--;cout<<"/";b--;cout<<"=";c--;cout<<endl; // // c=a%b; // BigNum_modulo(a,b,c); // a--;cout<<"%";b--;cout<<"=";c--;cout<<endl; // c=BigNum_gcd(a,b); // BigNum_gcd(a,b,c); // cout<<"gcd(";a--;cout<<",";b--;cout<<")=";c--;cout<<endl; // // c=BigNum_lcm(a,b); // BigNum_lcm(a,b,c); // cout<<"lcm(";a--;cout<<",";b--;cout<<")=";c--;cout<<endl; // } return 0; }
文章目录
- HDOJの旅
- [by_041]
- 曾经有一个 序
- 目录
- @[toc]
- [ACM Steps](http://acm.hdu.edu.cn/game)
- Chapter One - 阶段1
- Section One - 基本输入输出
- Section Two - 简单的推公式
- Section Three - 数据结构初步、算法初步
- Chapter Two - 阶段2
- Section One - 数论初步
- 2.1.1.最小公倍数(P1108,LCM)
- 2.1.2.How many prime numbers(P2138)
- 2.1.3.相遇周期(P1713)
- 2.1.4.
- 2.1.5.
- 2.1.6.
- 2.1.7.Leftmost Digit(P1060)
- 2.1.8.小数化分数2(P1717)
- Problems Set
- P1000 A + B Problem
- P1001 Sum Problem
- P1002 A + B Problem II
- P1003 Max Sum
- P1004 Let the Balloon Rise
- P1005 Number Sequence
- P1006 Tick and Tick
- P1007 Quoit Design
- P1008
- P1009 FatMouse' Trade
- P1010
- P1011
- P1012 u Calculate e
- P1013
- P1014
- P1015
- P1016
- P1017
- P1018
- P1019
- P1020 Encoding
- P1021
- P1022
- P1023
- P1024
- P1025
- P1026
- P1027
- P1028
- P1029
- P1030
- P1031
- P1032
- P1033
- P1034
- P1035 Robot Motion
- P1036
- P1037
- P1038
- P1039
- P1040 As Easy As A+B
- P1041
- P1042~1048
- P1049 Climbing Worm
- P1050~1059
- P1060 Leftmost Digit
- P1061 Rightmost Digit
- P1062~1088
- P1089 A+B for Input-Output Practice (I)
- P1090 A+B for Input-Output Practice (II)
- P1091 A+B for Input-Output Practice (III)
- P1092 A+B for Input-Output Practice (IV)
- P1093 A+B for Input-Output Practice (V)
- P1094 A+B for Input-Output Practice (VI)
- P1095
- P1096
- P1097
- P1098
- P1099
- P1106 排序
- P1108 最小公倍数
- P1196 Lowest Bit
- P1234 开门人和关门人
- P1328 IBM Minus One
- P1717 小数化分数2
- P2138 How many prime numbers
- P2161 Primes
- P2317 Nasty Hacks
- P2093 考试排名
- P2095 find your present (2)
- P2111 Saving HDU
- P2550 百步穿杨
- P2561 第二小整数
- P2719 The Seven Percent Solution
- P3188
- 附件 - 合集
- 高精度模板(用vector_int表示,范围正整数)
这篇关于【历史遗留】还有记录的:HDOJ-刷题.md的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南