算法学习(16):二分图最大匹配

2021/5/17 14:25:22

本文主要是介绍算法学习(16):二分图最大匹配,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

二分图最大匹配

模板

#include <bits/stdc++.h>
using namespace std;

struct augment_path {
  vector<vector<int> > g;
  vector<int> pa;  // 匹配
  vector<int> pb;
  vector<int> vis;  // 访问
  int n, m;         // 顶点和边的数量
  int dfn;          // 时间戳记
  int res;          // 匹配数

  augment_path(int _n, int _m) : n(_n), m(_m) {
    assert(0 <= n && 0 <= m);
    pa = vector<int>(n, -1);
    pb = vector<int>(m, -1);
    vis = vector<int>(n);
    g.resize(n);
    res = 0;
    dfn = 0;
  }

  void add(int from, int to) {
    assert(0 <= from && from < n && 0 <= to && to < m);
    g[from].push_back(to);
  }

  bool dfs(int v) {
    vis[v] = dfn;
    for (int u : g[v]) {
      if (pb[u] == -1) {
        pb[u] = v;
        pa[v] = u;
        return true;
      }
    }
    for (int u : g[v]) {
      if (vis[pb[u]] != dfn && dfs(pb[u])) {
        pa[v] = u;
        pb[u] = v;
        return true;
      }
    }
    return false;
  }

  int solve() {
    while (true) {
      dfn++;
      int cnt = 0;
      for (int i = 0; i < n; i++) {
        if (pa[i] == -1 && dfs(i)) {
          cnt++;
        }
      }
      if (cnt == 0) {
        break;
      }
      res += cnt;
    }
    return res;
  }
};

int main() {
  int n, m, e;
  cin >> n >> m >> e;
  augment_path solver(n, m);
  int u, v;
  for (int i = 0; i < e; i++) {
    cin >> u >> v;
    u--, v--;
    solver.add(u, v);
  }
  cout << solver.solve() << "\n";
  for (int i = 0; i < n; i++) {
    cout << solver.pa[i] + 1 << " ";
  }
  cout << "\n";
}

二分图最大独立集

选最多的点,满足两两之间没有边相连。
二分图中,最大独立集 = n - 最大匹配。

二分图最小点覆盖

选最少的点,满足每条边至少有一个端点被选,不难发现补集是独立集。
二分图中,最小点覆盖 = n - 最大独立集。



这篇关于算法学习(16):二分图最大匹配的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程