SparkSQL电商用户画像(七)之用户画像开发(客户消费订单表)

2021/5/18 19:27:43

本文主要是介绍SparkSQL电商用户画像(七)之用户画像开发(客户消费订单表),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

--用户画像 客户消费订单表
create database if not exists gdm;
create  table if not exists gdm.itcast_gdm_user_consume_order(
user_id string, --客户ID
first_order_time timestamp, --第一次消费时间
last_order_time timestamp, --最近一次消费时间
first_order_ago bigint, --首单距今时间
last_order_ago bigint, --尾单距今时间
month1_hg_order_cnt bigint, --近30天购买次数(不含退拒)
month1_hg_order_amt double, --近30天购买金额(不含退拒)
month2_hg_order_cnt bigint, --近60天购买次数(不含退拒)
month2_hg_order_amt double, --近60天购买金额(不含退拒)
month3_hg_order_cnt bigint, --近90天购买次数(不含退拒)
month3_hg_order_amt double, --近90天购买金额(不含退拒)
month1_order_cnt bigint, --近30天购买次数(含退拒)
month1_order_amt double, --近30天购买金额(含退拒)
month2_order_cnt bigint, --近60天购买次数(含退拒)
month2_order_amt double, --近60天购买金额(含退拒)
month3_order_cnt bigint, --近90天购买次数(含退拒)
month3_order_amt double, --近90天购买金额(含退拒)
max_order_amt double, --最大消费金额
min_order_amt double, --最小消费金额
total_order_cnt bigint, --累计消费次数(不含退拒)
total_order_amt double, --累计消费金额(不含退拒)
user_avg_amt double, --客单价(含退拒)
month3_user_avg_amt double, --近90天的客单价
common_address string, --常用收货地址
common_paytype string, --常用支付方式
month1_cart_cnt bigint, --近30天购物车的次数
month1_cart_goods_cnt bigint, --近30天购物车商品件数
month1_cart_submit_cnt bigint, --近30天购物车提交商品件数
month1_cart_rate double, --近30天购物车成功率
month1_cart_cancle_cnt double, --近30天购物车放弃件数
return_cnt bigint, --退货商品数量
return_amt double, --退货商品金额
reject_cnt bigint, --拒收商品数量
reject_amt double, --拒收商品金额
last_return_time timestamp, --最近一次退货时间
school_order_cnt bigint, --学校下单总数
company_order_cnt bigint, --单位下单总数
home_order_cnt bigint, --家里下单总数
forenoon_order_cnt bigint, --上午下单总数
afternoon_order_cnt bigint, --下午下单总数
night_order_cnt bigint, --晚上下单总数
morning_order_cnt bigint, --凌晨下单总数
dw_date timestamp
) partitioned by (dt string);
---客户消费订单模型表-临时表01

drop table if exists gdm.itcast_gdm_user_consume_order_temp_01;

CREATE TABLE gdm.itcast_gdm_user_consume_order_temp_01 AS

SELECT

  t.user_id,

  MIN(order_date) first_order_time,--第一次消费时间

  MAX(order_date) last_order_time,--最近一次消费时间

  DATEDIFF(MIN(order_date), '2017-01-01') first_order_ago,--首单距今时间

  DATEDIFF(MAX(order_date), '2017-01-01') last_order_ago,--尾单距今时间

  SUM(

    CASE

      WHEN t.dat_30 = 1

      AND t.order_flag = 0

      THEN 1

    END

  ) month1_hg_order_cnt,--近30天购买次数(不含退拒)

  SUM(

    CASE

      WHEN t.dat_30 = 1

      AND t.order_flag = 0

      THEN t.order_money

    END

  ) month1_hg_order_amt,--近30天购买金额(不含退拒)

  SUM(

    CASE

      WHEN t.dat_60 = 1

      AND t.order_flag = 0

      THEN 1

    END

  ) month2_hg_order_cnt,--近60天购买次数(不含退拒)

  SUM(

    CASE

      WHEN t.dat_60 = 1

      AND t.order_flag = 0

      THEN t.order_money

    END

  ) month2_hg_order_amt,--近60天购买金额(不含退拒)

  SUM(

    CASE

      WHEN t.dat_90 = 1

      AND t.order_flag = 0

      THEN 1

    END

  ) month3_hg_order_cnt,--近90天购买次数(不含退拒)

  SUM(

    CASE

      WHEN t.dat_90 = 1

      AND t.order_flag = 0

      THEN t.order_money

    END

  ) month3_hg_order_amt,--近90天购买金额(不含退拒)

  SUM(dat_30) month1_order_cnt,--近30天购买次数(含退拒)

  SUM(

    CASE

      WHEN t.dat_30 = 1

      THEN t.order_money

    END

  ) month1_order_amt,--近30天购买金额(含退拒)

  SUM(dat_60) month2_order_cnt,--近60天购买次数(含退拒)

  SUM(

    CASE

      WHEN t.dat_60 = 1

      THEN t.order_money

    END

  ) month2_order_amt,--近60天购买金额(含退拒)

  SUM(dat_90) month3_order_cnt,--近90天购买次数(含退拒)

 SUM(

    CASE

      WHEN t.dat_90 = 1

      THEN t.order_money

    END

  ) month3_order_amt,--近90天购买金额(含退拒)

  MAX(t.order_money) max_order_amt,--最大消费金额

  MIN(t.order_money) min_order_amt,--最小消费金额

    SUM(

    CASE

      WHEN t.order_flag = 0

      THEN 1

    END

  ) total_order_cnt,--累计消费次数(不含退拒)

  SUM(

    CASE

      WHEN t.order_flag = 0

      THEN t.order_money

    END

  ) total_order_amt,--累计消费金额(不含退拒)

  SUM(coupon_money) total_coupon_amt,--累计使用代金券金额

  SUM(t.order_money) / COUNT(1) user_avg_amt,--客单价(含退拒)

  0 month3_user_avg_amt,--近90天的客单价(含退拒)

  0 common_address,--常用收获地址

  0 common_paytype,--常用支付方式

  0 month1_cart_cnt,--最近30天购物车次数

  0 month1_cart_goods_cnt,--最近30天购物车商品件数

  0 month1_cart_submit_cnt,--最近30天购物车提交商品件数

  0 month1_order_rate,--最近30天购物车成功率

  0 month1_cart_cancle_cnt,--最近30天购物车放弃件数

 SUM(

    CASE

      WHEN t.order_status = 3

      THEN t1.goods_amount

    END

  ) return_cnt,--退货商品数量

  SUM(

    CASE

      WHEN t.order_status = 3

      THEN t.order_money

    END

  ) return_amt,--退货商品金额

  SUM(

    CASE

      WHEN t.order_status = 4

      THEN t1.goods_amount

    END

  ) reject_cnt,--拒收商品数量

  SUM(

    CASE

      WHEN t.order_status = 4

      THEN t.order_money

    END

  ) reject_amt,--拒收商品金额

  MAX(

    CASE

      WHEN t.order_status = 3

      THEN t.order_date

    END

  ) last_return_time,--最近一次退货时间

  SUM(

    CASE

      WHEN t2.order_addr = 1

      THEN 1

    END

  ) school_order_cnt,--学校下单总数

  SUM(

    CASE

      WHEN t2.order_addr = 2

      THEN 1

    END

  ) company_order_cnt,--单位下单总数

  SUM(

    CASE

      WHEN t2.order_addr = 3

      THEN 1

    END

  ) home_order_cnt,--家里下单总数

  SUM(

    CASE

      WHEN t.order_hour >= 8

      AND t.order_hour <= 11

      THEN 1

    END

  ) forenoon_order_cnt,--上午下单总数

  SUM(

    CASE

      WHEN t.order_hour >= 12

      AND t.order_hour <= 18

      THEN 1

    END

  ) afternoon_order_cnt,--下午下单总数

  SUM(

    CASE

      WHEN t.order_hour >= 19

      AND t.order_hour <= 22

      THEN 1

    END

  ) night_order_cnt,--晚上下单总数

  SUM(

    CASE

      WHEN t.order_hour >= 23

      AND t.order_hour <= 7

      THEN 1

    END

  ) morning_order_cnt --凌晨下单总数

FROM

  (SELECT

    a.*,

    (

      CASE

        WHEN order_date >= DATE_SUB('2017-01-01', 29)

        AND order_date <= '2017-01-01'

        THEN 1

      END

    ) dat_30,

    (

      CASE

        WHEN order_date >= DATE_SUB('2017-01-01', 59)

        AND order_date <= '2017-01-01'

        THEN 1

      END

    ) dat_60,

    (

      CASE

        WHEN order_date >= DATE_SUB('2017-01-01', 89)

        AND order_date <= '2017-01-01'

        THEN 1

      END

    ) dat_90,

    (

      CASE

        WHEN a.order_status IN (3, 4)

        THEN 1

        ELSE 0

      END

    ) order_flag,--退货与拒收标示

    HOUR(order_date) order_hour

  FROM

    gdm.itcast_gdm_order a

  WHERE dt = '2017-01-01') t

  LEFT JOIN

    (SELECT

      order_id,

      goods_amount

    FROM

      fdm.itcast_fdm_order_goods) t1

    ON (t.order_id = t1.order_id)

  LEFT JOIN

    (SELECT

      user_id,

      order_addr

    FROM

      gdm.itcast_user_order_addr_model) t2

    ON (t.user_id = t2.user_id)

GROUP BY t.user_id ;
---购物车临时模型表--临时表02

DROP TABLE IF EXISTS gdm.itcast_gdm_user_consume_order_temp_02;

CREATE TABLE gdm.itcast_gdm_user_consume_order_temp_02 AS

SELECT

  user_id,

  COUNT(1) month1_cart_cnt,--最近30天购物车次数

  SUM(goods_num) month1_cart_goods_cnt,--最近30天购物车商品件数

  SUM(

    CASE

      WHEN sumbit_time <> ''

      THEN goods_num

      ELSE 0

    END

  ) month1_cart_submit_cnt,--最近30天购物车提交商品件数

 '' month1_cart_rate,--最近30天购物车成功率

 SUM(

    CASE

      WHEN cancle_time <> ''

      THEN goods_num

      ELSE 0

    END

  ) month1_cart_cancle_cnt  --最近30天购物车放弃件数

FROM

  fdm.itcast_fdm_order_cart

WHERE dt = '2017-01-01'

  AND to_date (add_time) >= DATE_SUB('2017-01-01', 29)

  AND to_date (add_time) <= '2017-01-01'

GROUP BY user_id ;
---购物车临时模型表---常用地址和常用支付方式-临时表03

drop table if exists gdm.itcast_gdm_user_consume_order_temp_03;

create table gdm.gdm_user_consume_order_temp_03 as

select

  t.user_id,

  t.con,

  t.type,

  t.cnt

from

  (select

    b.user_id,

    b.con,

    b.type,

    b.cnt,

    row_number() over(distribute by b.user_id,

    b.type sort by b.cnt,

    b.type desc) rn

from

  (select

    a.user_id,concat(

      coalesce(area_name, ''),

      coalesce(address, '')) con,

    'address' type,

    count(1) cnt

  from

    gdm.itcast_gdm_order a where dt = '2017-01-01'

  group by a.user_id,

    concat(

      coalesce(area_name, ''),

      coalesce(address, '')

    )

    union

    all

    select

      a.user_id,

      a.pay_type con,

      'pay_type' type,

      count(1) cnt

    from

      gdm.itcast_gdm_order a

    where dt = '2017-01-01'

    group by a.user_id,

      a.pay_type) b) t

  where t.rn = 1 ;
--购物车表和订单表整合

drop table if exists gdm.itcast_gdm_user_consume_order_temp_100;

create table gdm.gdm_user_consume_order_temp_100 as

select

  a.user_id

from

  (select

    user_id

  from

    gdm.itcast_gdm_user_consume_order_temp_01

  union

  all

  select

    user_id

  from

    gdm.itcast_gdm_user_consume_order_temp_02) a

group by a.user_id ;
--生成最终的客户消费订单表

INSERT overwrite TABLE gdm.itcast_gdm_user_consume_order PARTITION (dt = '2017-01-01')

SELECT

  t.user_id,  --客户ID

  t1.first_order_time,  --常用地址和常用支付方式次消费时间

  t1.last_order_time,  --最近一次消费时间

  t1.first_order_ago,  --首单距今时间

  t1.last_order_ago,  --尾单距今时间

  t1.month1_hg_order_cnt,--近30天购买次数(不含退拒)

  t1.month1_hg_order_amt,--近30天购买金额(不含退拒)

  t1.month2_hg_order_cnt,--近60天购买次数(不含退拒)

  t1.month2_hg_order_amt,--近60天购买金额(不含退拒)

  t1.month3_hg_order_cnt,--近90天购买次数(不含退拒)

  t1.month3_hg_order_amt,--近90天购买金额(不含退拒)

  t1.month1_order_cnt,    --近30天购买次数(含退拒)

  t1.month1_order_amt,    --近30天购买金额(含退拒)

  t1.month2_order_cnt,    --近60天购买次数(含退拒)

  t1.month2_order_amt,    --近60天购买金额(含退拒)

  t1.month3_order_cnt,    --近90天购买次数(含退拒)

  t1.month3_order_amt,    --近90天购买金额(含退拒)

  t1.max_order_amt,       --最大消费金额

  t1.min_order_amt,       --最小消费金额

  t1.total_order_cnt,       --累计消费次数(不含退拒)

  t1.total_order_amt,      --累计消费金额(不含退拒)

  t1.user_avg_amt,        --客单价(含退拒)

  (

    CASE

      WHEN t1.month3_order_cnt <> 0

      THEN t1.month3_order_amt / t1.month3_order_cnt

      ELSE 0

    END

  ) month3_user_avg_amt,    --近90天的客单价(含退拒)

  t3.common_address,        --常用收货地址

  t3.common_paytype,        --常用支付方式

  t2.month1_cart_cnt,         --近30天购物车的次数

  t2.month1_cart_goods_cnt,   --近30天购物车商品件数

  t2.month1_cart_submit_cnt,  --近30天购物车提交商品件数

  (

    CASE

      WHEN t1.month1_order_cnt <> 0

      THEN t2.month1_cart_submit_cnt / t2.month1_cart_goods_cnt

      ELSE 0

    END

  ) month1_cart_rate,  --近30天购物车成功率

  t2.month1_cart_cancle_cnt,  --近30天购物车放弃件数

  t1.return_cnt,                  --退货商品数量

  t1.return_amt,                  --退货商品金额

  t1.reject_cnt,                 --拒收商品数量

  t1.reject_amt,                 --拒收商品金额

  t1.last_return_time,            --最近一次退货时间

  t1.school_order_cnt,           --学校下单总数

  t1.company_order_cnt,         --单位下单总数

  t1.home_order_cnt,            --家里下单总数

  t1.forenoon_order_cnt,         --上午下单总数

  t1.afternoon_order_cnt,        --下午下单总数

  t1.night_order_cnt,            --晚上下单总数

  t1.morning_order_cnt,          --凌晨下单总数

  FROM_UNIXTIME(UNIX_TIMESTAMP())  dw_date

FROM                             

  gdm.itcast_gdm_user_consume_order_temp_100 t

  LEFT JOIN gdm.itcast_gdm_user_consume_order_temp_01 t1

    ON (t.user_id = t1.user_id)

  LEFT JOIN gdm.itcast_gdm_user_consume_order_temp_02 t2

    ON (t.user_id = t2.user_id)

  LEFT JOIN

    (SELECT

      user_id,

      MAX(

        CASE

          WHEN type = 'address'

          THEN con

        END

      ) common_address,

      MAX(

        CASE

          WHEN type = 'pay_type'

          THEN con

        END

      ) common_paytype

    FROM

      gdm.itcast_gdm_user_consume_order_temp_03

    GROUP BY user_id) t3

    ON (t.user_id = t3.user_id);


这篇关于SparkSQL电商用户画像(七)之用户画像开发(客户消费订单表)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程