08 学生课程分数的Spark SQL分析
2021/5/20 2:28:19
本文主要是介绍08 学生课程分数的Spark SQL分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一. 读学生课程分数文件chapter4-data01.txt,创建DataFrame。
1.生成“表头”
2.生成“表中的记录”
3.把“表头”和“表中的记录”拼装在一起
用DataFrame的操作或SQL语句完成以下数据分析要求,并和用RDD操作的实现进行对比:
- 每个分数+5分。
- df_scs.select('name','cource',df_scs['score']+5).show()
- 总共有多少学生?
- df_scs.select('name').distinct().count()
- 总共开设了哪些课程?
- df_scs.select('cource').distinct().show()
- 每个学生选修了多少门课?
- df_scs.groupBy('name').count().show()
- 每门课程有多少个学生选?
- df_scs.groupBy('cource').count().show()
- 每门课程大于95分的学生人数?
- df_scs.filter(df_scs['score']>95).groupBy('cource').count().show()
Tom选修了几门课?每门课多少分?
- df_scs.filter(df_scs['name']=='Tom').select('cource','score').show()
- Tom的成绩按分数大小排序。
- df_scs.filter(df_scs['name']=='Tom').sort(df_scs['score'].desc()).show()
- Tom的平均分
-
df_scs.filter(df_scs['name']=='Tom').groupBy('cource').avg('score').show()
-
- 求每门课的平均分,最高分,最低分。
- df_scs.groupBy("cource").avg('score').show()
- df_scs.groupBy("cource").max('score').show()
- df_scs.groupBy("cource").min('score').show()
-
- 求每门课的选修人数及平均分,精确到2位小数。
- df_scs.select(countDistinct('name').alias('学生人数'),countDistinct('cource').alias('课程数'),round(mean('score'),2).alias('所有课的平均分').alias('所有课的平均分')).show()
这篇关于08 学生课程分数的Spark SQL分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15JavaMailSender是什么,怎么使用?-icode9专业技术文章分享
- 2024-11-15JWT 用户校验学习:从入门到实践
- 2024-11-15Nest学习:新手入门全面指南
- 2024-11-15RestfulAPI学习:新手入门指南
- 2024-11-15Server Component学习:入门教程与实践指南
- 2024-11-15动态路由入门:新手必读指南
- 2024-11-15JWT 用户校验入门:轻松掌握JWT认证基础
- 2024-11-15Nest后端开发入门指南
- 2024-11-15Nest后端开发入门教程
- 2024-11-15RestfulAPI入门:新手快速上手指南