LTE架构和协议栈概述

2021/6/2 10:52:26

本文主要是介绍LTE架构和协议栈概述,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

  • 1 LTE网络架构和接口
    • 1.1 终端
    • 1.2 无线网络(E-UTRAN)
      • 1.2.1 无线网络的结构
      • 1.2.2 无线网络的功能
    • 1.3 核心网(EPC)
      • 1.3.1 MME
      • 1.3.2 SGW
      • 1.3.3 PGW
      • 1.3.4 HSS
      • 1.3.5 PCRF
    • 1.4 接口
      • 1.4.1 LTE-Uu
      • 1.4.2 X2-控制面
      • 1.4.3 X2-控制面
      • 1.4.4 S1-控制面
      • 1.4.5 S1-用户面
      • 1.4.6 S6a接口
      • 1.4.7 S11接口
  • 2 LTE协议栈
    • 2.1 用户面协议
      • 2.1.1 LTE-Uu接口协议
        • 2.1.1.1 PDCP
        • 2.1.1.2 RLC
        • 2.1.1.3 MAC
      • 2.1.2 S1-U/S5/X2接口协议
        • 2.1.2.1 GTP-U
    • 2.2 控制面协议
      • 2.2.1 LTE-Uu接口协议
        • 2.1.1.1 NAS
        • 2.1.1.2 RRC协议
        • 2.1.1.3 X2接口协议
        • 2.1.1.4 SI-MME接口协议

1 LTE网络架构和接口

完整的LTE网络架构由三个部分组成:终端(UE)+无线网络(E-UTRAN)+核心网(EPC)。
在这里插入图片描述
下面详细的介绍下各个部分。

1.1 终端

终端就是指用户的手机,或者是其他可以利用LTE上网的设备。
FDD LTE和TDD LTE分别是LTE的两种不同的系统模式。两者大部分的基础技术都是一样的,主要区别在于FDD为频分双工,而TDD为时分双工。两者并不互相兼容。FDD“频分双工”指传输数据时需要两个独立的信道,一个信道用来向下传送信息,另一个信道用来向上传送信息。两个信道之间存在一个保护频段, 以防止邻近的发射机和接收机之间产生相互干扰。就相当于一条双向公路,两边的车辆各走各的路,互补干扰。而保护频段就相当于公路中间的隔离带。TDD“时分双工”的发射和接收信号是在同一频率信道的不同时隙中进行的,彼此之间采用一定的保证时间予以分离。可以比作一条独木桥,在同一时段,只能有一边的人通过,也就是说,数据的上传和下载是在同一信道交替进行的。
LTE的频段是区分FDD和TDD制式的。LTE规范定义了非常多的工作频段,这从侧面说明了LTE技术受欢迎的程度:拥有各个频段的运营商都想部署LTE,因此需要LTE技术支持这些频段。
在这里插入图片描述

1.2 无线网络(E-UTRAN)

1.2.1 无线网络的结构

在移动通信系统中,无线网络承上启下,连接核心网和终端设备,实现移动通信业务的覆盖,是移动通信系统的关键组成部分。LTE无线网络中只有一种网元:基站eNodeB(简写eNB)。基站eNB之间通过X2接口互连,通过S1接口与核心网设备相连。
在这里插入图片描述

1.2.2 无线网络的功能

eNB 的主要功能就是连接、管理和控制终端,并且为核心网连接、管理以及控制终端提供沟通的管道。为了实现这些功能,eNB需要与终端和核心网进行交互,也就是要大量传递大量的信息,下面介绍LTE无线网络是如何传递信息的。
在介绍LTE无线网络如何传递信息之前,我们需要知道与信息传递密不可分的接口——空中接口。空中接口是终端和eNB两种设备之间的无线接口,终端只有通过空中接口连接到无线网络,才能获得移动通信系统提供的服务。
LTE无线网络上的信息利用承载来传递。LTE无线网络的根据承载的内容不同分为SRB(signaling radio bearer,信令承载)和DRB(data radio bearer,业务承载)。
SRB承载控制面(信令)数据,根据承载的信令不同分为以下三类SRB:
1)SRB0:承载RRC连接建立之前的RRC信令,通过CCCH逻辑信道传输,在RLC层采用TM模式;
2)SRB1承载RRC信令(可能会携带一些NAS信令)和SRB2之间之前的NAS信令,通过DCCH逻辑信道传输,在RLC层采用AM模式;
3)SRB2承载NAS信令,通过DCCH逻辑信道传输,在RLC层采用AM模式,SRB2优先级低于SRB1,安全模式完成后才能建立SRB2;DRB承载用户面数据,根据Qos不同,UE与eNB之间可能最多建立8个DRB。
业务承载的具体情况:
在LTE系统中,一个UE到一个PGW之间,具有相同Qos的业务流称为一个EPS承载。EPS承载中UE到eNB空口之间的一段称为无线承载RB;eNB到SGW之间的一段称为S1承载。无线承载与S1承载统称为E-RAB。
在这里插入图片描述

1.3 核心网(EPC)

EPC主要是包括5大网元:MME+SGW+PGW+HSS+PCRF

1.3.1 MME

MME是Mobility Management Entity的缩写,是核心网中最重要的实体之一,提供以下的功能:NAS 信令传输、用户鉴权与漫游管理(S6a)、移动性管理、EPS承载管理。在这里所述的功能中,NAS信令指的是三层信令,包含EMM, ESM 和NAS 安全;然后移动性管理的话主要有寻呼,TAI管理和切换;承载(承载是WCDMA引入的概念)的话主要是EPS 承载(bearer)的建立,修改,销毁等。

1.3.2 SGW

SGW是Serving Gateway 的缩写,负责处理用户的业务,用来完成移动数据业务的承载。SGW相当于数据业务的中转站。

1.3.3 PGW

PGW是PDN Gateway的缩写,其中PDN是Packet Data Network 的缩写,通俗地讲,可以理解为互联网,这是整个LTE架构与互联网的接口处,所以UE如果想访问互联网就必须途径P-GW实体,从另外一方面说,如果想通过P-GW而访问互联网的话,必须要有IP地址,所以P-GW负责了UE的IP地址的分配工作,同时提供IP路由和转发的功能。此外,为了使互联网的各种业务能够分配给不同的承载,P-GW提供针对每一个SDF和每一个用户的包过滤功能。(也就是说在P-GW处,进出的每一个包属于哪个级别的SDF和哪一个用户都已经被匹配好了。这里的SDF是服务数据流Service Data Flow的缩写,意思就是P-GW能区分每一个用户的不同服务的数据包,从而映射到不同的承载上去。以后会有关于SDF的更详细的说明)。此外,P-GW还有其他的一些功能,比如根据用户和服务进行不同的计费和不同的策略,这部分对于每个运营商都会有差异,在此不做多的赘述。

1.3.4 HSS

HSS是Home Subscriber Server的缩写,归属用户服务器,这是存在于核心网中的一个数据库服务器,里面存放着所有属于该核心网的用户的数据信息。当用户连接到MME的时候,用户提交的资料会和HSS数据服务器中的资料进行比对来进行鉴权。

1.3.5 PCRF

PCRF是Policy and Charging Rules Function的缩写,策略与计费规则,它会根据不同的服务制定不同的PCC计费策略。

1.4 接口

1.4.1 LTE-Uu

LTE-Uu接口是位于终端与基站之间的空中接口。在这中间,终端会跟基站建立信令连接与数据连接,信令连接叫做RRC Connection,相应的信令在SRB上进行传输,(如前所述,SRB有三类,分别是SRB0, SRB1和SRB2,SRB可以理解为是传输信令的管道),而数据的连接是逻辑信道,相关的数据在DRB上传输。这两个连接是终端与网络进行通信所必不可少的。

1.4.2 X2-控制面

X2是两个基站之间的接口,利用X2接口,基站间可以实现SON功能(Self Organizing Network),比如PCI的冲突检测等。

1.4.3 X2-控制面

X2用户面的接口是建立在GTP-U协议的基础上,连接两个基站,传输基站间的数据。(X2 handover等)

1.4.4 S1-控制面

S1是基站与MME之间的接口,相关NAS信令的传输都必须建立在S1连接建立的基础上。

1.4.5 S1-用户面

S1用户面的接口是建立在GTP-U协议的基础上,连接基站与MME,传输基站与MME之间的数据。S1 handover,上网的数据流等。

1.4.6 S6a接口

MME与HSS通过S6a接口连接。

1.4.7 S11接口

MME与SGW通过S11接口连接。

2 LTE协议栈

首先对控制面和用户面进行解释:
(1)控制面:负责传送和处理系统协调信令的协议。
(2)用户面:负责传送和处理用户数据流工作的协议。

2.1 用户面协议

在这里插入图片描述

2.1.1 LTE-Uu接口协议

2.1.1.1 PDCP

PDCP(Packet Data Convergence Protocol, 分组数据汇聚协议子层)协议针对传输的数据包执行以下的操作:数据包头压缩(ROHC)、AS层的安全(包括加密与完整性检验)、包的重排序和重传。

2.1.1.2 RLC

RLC层(Radio Link Control,无线链路控制子层)针对传输的数据包执行以下的操作:在发送端,提供数据包的分段与串联、在接收端,提供透明,确认模式与非确认模式三种模式、RLC层也执行对RLC PDU的重排序与重传。

2.1.1.3 MAC

MAC层(Medium Access Control, 媒介接入控制子层)对从高层传来的MAC PDU和从底层传来的包做以下的处理:在物理层和RLC层之间提供逻辑信道的连接、逻辑信道的复用与解复用、对逻辑信道根据QoS来进行调度和分配优先级。

2.1.2 S1-U/S5/X2接口协议

2.1.2.1 GTP-U

GTP-U协议主要是用来转发用户的IP数据包,GTP-U协议还有个特点,只要GTP-U连接建立后传输数据,那么在数据结束之后总会有END Marker来标志着数据流的结束。

2.2 控制面协议

在这里插入图片描述

2.2.1 LTE-Uu接口协议

2.1.1.1 NAS

提供移动性管理和承载管理,比如说eNB的信息的更新,或者MME的配置信息的更新会触发Configuration Update信令的下发或者上载,然后E-RAB的建立,修改,销毁都是属于NAS管理的范围之内。

2.1.1.2 RRC协议

RRC协议(Radio Resource Control,无线资源控制子层)支持传输NAS信令, 同时也提供对于无线资源的管理。广播系统消息,例如MIB,SIB1,SIB2 ……;RRC连接的建立,重建立,重配置和释放;无线承载(RB)的建立,修改与释放。

2.1.1.3 X2接口协议

X2AP协议支持无线网(E-UTRAN)中的UE移动性管理和SON功能。比如通过X2AP的数据转发(在X2 Handover的时候的数据转发),SN status的转发(Handover时),或者时eNB之间的资源状态消息交换等。

2.1.1.4 SI-MME接口协议

S1AP协议如前所述,是S1 连接建立的时候用来传输信令的协议,该协议负责S1接口的管理,E-RAB的管理,还有NAS信令的传输,以及UE上下文的管理。

参考书籍:《LTE教程:原理与实现(第2版)》
参考博客:https://blog.csdn.net/starperfection/article/details/78719935



这篇关于LTE架构和协议栈概述的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程