Java NIO 总结

2021/6/5 20:21:11

本文主要是介绍Java NIO 总结,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

先上参考链接:
http://ifeve.com/java-nio-all/
https://www.imooc.com/article/265871
https://blog.csdn.net/luzhensmart/article/details/82230076
https://www.zhihu.com/question/29005375

Java中的IO大致可以分为三类:BIO,NIO,AIO

  1. BIO就是我们最常用的阻塞式(Blocking)IO,它是基于流模型实现的,交互的方式是同步、阻塞方式,也就是说在读入输入流或者输出流时,在读写动作完成之前,线程会一直阻塞在那里,它们之间的调用时可靠的线性顺序。它的有点就是代码比较简单、直观;缺点就是 IO 的效率和扩展性很低,容易成为应用性能瓶颈。
    _
  2. NIO是Java1.4中引进的,是非阻塞式(noBlocking)IO,也可以称为NewIO,,它将信息化作块进行传输。在nio中,单个线程可以管理多个输入和输出通道。提供了 Channel、Selector、Buffer 等新的抽象,可以构建多路复用(Selector)的、同步非阻塞 IO 程序,同时提供了更接近操作系统底层高性能的数据操作方式。
    _
    实际上,“旧”的I/O包已经使用NIO重新实现过,即使我们不显式的使用NIO编程,也能从中受益。(《java编程思想》)
    _
  3. AIO 是 Java 1.7 之后引入的包,是 NIO 的升级版本,提供了异步非堵塞的 IO 操作方式,所以人们叫它 AIO(Asynchronous IO),异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。

NIO和IO适用场景NIO是为弥补传统IO的不足而诞生的,但是尺有所短寸有所长,NIO也有缺点,因为NIO是面向缓冲区的操作,每一次的数据处理都是对缓冲区进行的,那么就会有一个问题,在数据处理之前必须要判断缓冲区的数据是否完整或者已经读取完毕,如果没有,假设数据只读取了一部分,那么对不完整的数据处理没有任何意义。所以每次数据处理之前都要检测缓冲区数据。那么NIO和IO各适用的场景是什么呢?如果需要管理同时打开的成千上万个连接,这些连接每次只是发送少量的数据,例如聊天服务器,这时候用NIO处理数据可能是个很好的选择。而如果只有少量的连接,而这些连接每次要发送大量的数据,这时候传统的IO更合适。使用哪种处理数据,需要在数据的响应等待时间和检查缓冲区数据的时间上作比较来权衡选择。

传统IO
接口A发起调用接口B后,这段时间什么事情也不能做,主线程阻塞一直等到接口B数据返回,然后才能进行其他操作,可想而知如果接口A调用的接口不止B的话(A->B->C->D->E。。。),那么等待的时间也是递增的,而且这期间CPU也要一直占用着,白白浪费资源。
而且还有一个隐患就是如果调用的其他服务中的接口比如C超时,或接口C挂掉了,那么对调用方服务A来说,剩余的接口比如D、E都会无限等待下去。。。
其实大部分情况下我们收到数据后内部的处理逻辑耗时都很短,这个可以通过埋点执行时间统计,大部分时间都浪费在了IO等待上。
在这里插入图片描述

NIO
大致流程就是接口A发起调用接口B的请求后就立即返回,而不用阻塞等待接口B响应,这样的好处是http-nio-8080-exec*线程可以马上得到复用,接着处理下一个前端请求的任务,如果接口B处理完返回数据后,会有一个回调线程池处理真正的响应,即这种模式下我们的业务流程是http线程只处理请求,回调线程处理接口响应。
在这里插入图片描述

NIO原理
在这里插入图片描述
结合上面的接口交互图可知,接口B通过网络返回数据给调用方(接口A)这一过程,对应底层实现就是网卡接收到返回数据后,通过自身的DMA(直接内存访问)将数据拷贝到内核缓冲区,这一步不需要CPU参与操作,也就是把原先CPU等待的事情交给了底层网卡去处理,这样CPU就可以专注于我们的应用程序即接口内部的逻辑运算。

NIO中三个重要概念:Channel、Selector、Buffer

nio在java里的实现主要是上图中的几个核心组件:channel、buffer、selector,这些组件组合起来即实现了上面所讲的多路复用机制,如下图所示:
在这里插入图片描述

(1)缓冲区buffer

buffer是一个对象,包含了读取和写入的数据,在nio中,所有的数据都是通过缓冲区来处理的。在写入数据时,也是写入到缓冲区中。任何时候访问NIO中的数据,都是通过缓冲区进行操作。

缓冲区实际是一个数组结构,并提供了对数据结构化访问以及维护读写位置等信息。

8种基本类型都有相应的缓冲区:ByteBuffe、CharBuffer、 ShortBuffer、IntBuffer、LongBuffer、FloatBuffer、DoubleBuffer。他们实现了相同的接口:Buffer。
缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。

为了理解Buffer的工作原理,需要熟悉它的三个属性:

capacity 容量
position 位置
limit 上限

position和limit的含义取决于Buffer处在读模式还是写模式。不管Buffer处在什么模式,capacity的含义总是一样的。

这里有一个关于capacity,position和limit在读写模式中的说明,详细的解释在插图后面。

capacity
作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。

position
当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1.
当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式,position会被重置为0. 当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。

limit
在写模式下,Buffer的limit表示你最多能往Buffer里写多少数据。 写模式下,limit等于Buffer的capacity。
当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)

在这里插入图片描述

Buffer的类型

Java NIO 有以下Buffer类型

ByteBuffer
MappedByteBuffer
CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer
ShortBuffer

如你所见,这些Buffer类型代表了不同的数据类型。换句话说,就是可以通过char,short,int,long,float 或 double类型来操作缓冲区中的字节。

MappedByteBuffer 有些特别,后面再讲。

Buffer的分配

1)要想获得一个Buffer对象首先要进行分配。 每一个Buffer类都有一个allocate方法。

下面是一个分配48字节capacity的ByteBuffer的例子。
ByteBuffer buf = ByteBuffer.allocate(48);

这是分配一个可存储1024个字符的CharBuffer:
CharBuffer buf = CharBuffer.allocate(1024);

2)向Buffer中写数据有两种方式:

  1. 从Channel写到Buffer的例子
    int bytesRead = inChannel.read(buf); //read into buffer.

  2. 通过put方法写Buffer的例子:
    buf.put(127);

put方法有很多版本,允许你以不同的方式把数据写入到Buffer中。例如, 写到一个指定的位置,或者把一个字节数组写入到Buffer。 更多Buffer实现的细节参考JavaDoc。

3)flip()方法

flip方法将Buffer从写模式切换到读模式。调用flip()方法会将position设回0,并将limit设置成之前position的值。

换句话说,position现在用于标记读的位置,limit表示之前写进了多少个byte、char等 —— 现在能读取多少个byte、char等。

从Buffer中读取数据有两种方式:

  1. 从Buffer读取数据到Channel的例子:
    //read from buffer into channel.
    int bytesWritten = inChannel.write(buf);
  2. 使用get()方法从Buffer中读取数据的例子
    byte aByte = buf.get();

get方法有很多版本,允许你以不同的方式从Buffer中读取数据。例如,从指定position读取,或者从Buffer中读取数据到字节数组。更多Buffer实现的细节参考JavaDoc。

4)rewind()方法

Buffer.rewind()将position设回0,所以你可以重读Buffer中的所有数据。limit保持不变,仍然表示能从Buffer中读取多少个元素(byte、char等)。

5)clear()与compact()方法

一旦读完Buffer中的数据,需要让Buffer准备好再次被写入。可以通过clear()或compact()方法来完成。

如果调用的是clear()方法,position将被设回0,limit被设置成 capacity的值。换句话说,Buffer 被清空了。Buffer中的数据并未清除,只是这些标记告诉我们可以从哪里开始往Buffer里写数据,当写的时候,自然会覆盖掉原来的数据。

如果Buffer中有一些未读的数据,调用clear()方法,数据将“被遗忘”,意味着不再有任何标记会告诉你哪些数据被读过,哪些还没有。

如果Buffer中仍有未读的数据,且后续还需要这些数据,但是此时想要先先写些数据,那么使用compact()方法。

compact()方法将所有未读的数据拷贝到Buffer起始处。然后将position设到最后一个未读元素正后面。limit属性依然像clear()方法一样,设置成capacity。现在Buffer准备好写数据了,但是不会覆盖未读的数据。

6)mark()与reset()方法

通过调用Buffer.mark()方法,可以标记Buffer中的一个特定position。之后可以通过调用Buffer.reset()方法恢复到这个position。例如:

buffer.mark();//call buffer.get() a couple of times, e.g. during parsing.
buffer.reset();  //set position back to mark.

7)equals()与compareTo()方法

可以使用equals()和compareTo()方法两个Buffer。

equals()

当满足下列条件时,表示两个Buffer相等:

有相同的类型(byte、char、int等)。
Buffer中剩余的byte、char等的个数相等。
Buffer中所有剩余的byte、char等都相同。
如你所见,equals只是比较Buffer的一部分,不是每一个在它里面的元素都比较。实际上,它只比较Buffer中的剩余元素。

compareTo()方法

compareTo()方法比较两个Buffer的剩余元素(byte、char等), 如果满足下列条件,则认为一个Buffer“小于”另一个Buffer:

第一个不相等的元素小于另一个Buffer中对应的元素 。
所有元素都相等,但第一个Buffer比另一个先耗尽(第一个Buffer的元素个数比另一个少)。

(2)通道channel

我们对数据的读取和写入都要通过channel,它就像水管一样,是一个通道。通道不同于流的地方就是通道是双向的,可以用于读、写和同时读写操作。

底层的操作系统的通道一般都是全双工的,所以全双工的Channel比流能更好的映射底层操作系统的API。

channel主要有2大类:

   selectablechannel 用于用户网络的读写(ServerSocketChannel和SocketChannel都是SelectableChannel的子类。)

   Filechannel 用于文件的操作

FileChannel的Demo演示:IO与NIO的速度差异
注意,FileChannel是不能与Selector一起使用的。

import java.io.*;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class Test {

    private static long transferFile(File source, File des) throws IOException {
        long startTime = System.currentTimeMillis();

        if (!des.exists())
            des.createNewFile();
        try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(source));
             BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(des));) {
            //将数据源读到的内容写入目的地--使用数组
            byte[] bytes = new byte[1024 * 1024];
            int len;
            while ((len = bis.read(bytes)) != -1) {
                bos.write(bytes, 0, len);
            }
        }

        long endTime = System.currentTimeMillis();
        return endTime - startTime;
    }

    private long transferFileWithNIO(File source, File des) throws IOException {
        long startTime = System.currentTimeMillis();

        if (!des.exists())
            des.createNewFile();
        try (RandomAccessFile read = new RandomAccessFile(source, "rw");
             RandomAccessFile write = new RandomAccessFile(des, "rw");

             FileChannel readChannel = read.getChannel();
             FileChannel writeChannel = write.getChannel();) {
            ByteBuffer byteBuffer = ByteBuffer.allocate(1024 * 1024);//1M缓冲区
            while (readChannel.read(byteBuffer) > 0) {
                byteBuffer.flip();
                writeChannel.write(byteBuffer);
                byteBuffer.clear();
            }
        }
        long endTime = System.currentTimeMillis();
        return endTime - startTime;
    }

    public static void main(String[] args) throws IOException {
        Test simpleFileTransferTest = new Test();
        File sourse = new File("/Users/riter/Downloads/source.zip");
        File des = new File("/Users/riter/Downloads/a1.zip");
        File nio = new File("/Users/riter/Downloads/a2.zip");

        long time = Test.transferFile(sourse, des);
        System.out.println(time + ":普通字节流时间");

        long timeNio = simpleFileTransferTest.transferFileWithNIO(sourse, nio);
        System.out.println(timeNio + ":NIO时间");
    }
}

服务器 & 客户端 demo演示:

// NIO 多路复用
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(4, 4,
        60L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
threadPool.execute(new Runnable() {
    @Override
    public void run() {
        try (Selector selector = Selector.open();
             ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();) {
            serverSocketChannel.bind(new InetSocketAddress(InetAddress.getLocalHost(), port));
            serverSocketChannel.configureBlocking(false);
            serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
            while (true) {
                selector.select(); // 阻塞等待就绪的Channel
                Set<SelectionKey> selectionKeys = selector.selectedKeys();
                Iterator<SelectionKey> iterator = selectionKeys.iterator();
                while (iterator.hasNext()) {
                    SelectionKey key = iterator.next();
                    try (SocketChannel channel = ((ServerSocketChannel) key.channel()).accept()) {
                        channel.write(Charset.defaultCharset().encode("你好,世界"));
                    }
                    iterator.remove();
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
});

// Socket 客户端(接收信息并打印)
try (Socket cSocket = new Socket(InetAddress.getLocalHost(), port)) {
    BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(cSocket.getInputStream()));
    bufferedReader.lines().forEach(s -> System.out.println("NIO 客户端:" + s));
} catch (IOException e) {
    e.printStackTrace();
}

(3)多路复用器 Selector

Selector是Java  NIO 编程的基础。
不用Selector的话是阻塞形态,要是用Selector必须开启非阻塞状态 socketChannel.configureBlocking(false);

为什么使用Selector?
仅用单个线程来处理多个Channels的好处是,只需要更少的线程来处理通道。事实上,可以只用一个线程处理所有的通道。对于操作系统来说,线程之间上下文切换的开销很大,而且每个线程都要占用系统的一些资源(如内存)。因此,使用的线程越少越好。
但是,需要记住,现代的操作系统和CPU在多任务方面表现的越来越好,所以多线程的开销随着时间的推移,变得越来越小了。实际上,如果一个CPU有多个内核,不使用多任务可能是在浪费CPU能力。不管怎么说,关于那种设计的讨论应该放在另一篇不同的文章中。在这里,只要知道使用Selector能够处理多个通道就足够了。

要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新连接进来,数据接收等。

提供选择已经就绪的任务的能力:Selector会不断轮询注册在其上的Channel,如果某个Channel上面发生读或者写事件,这个Channel就处于就绪状态,会被Selector轮询出来,然后通过SelectionKey可以获取就绪Channel的集合,进行后续的I/O操作。

一个Selector可以同时轮询多个Channel,因为JDK使用了epoll()代替传统的select实现,所以没有最大连接句柄1024/2048的限制。所以,只需要一个线程负责Selector的轮询,就可以接入成千上万的客户端。

1)Selector的创建

通过调用Selector.open()方法创建一个Selector,如下:
Selector selector = Selector.open();

2)向Selector注册通道

为了将Channel和Selector配合使用,必须将channel注册到selector上。通过SelectableChannel.register()方法来实现,如下:

channel.configureBlocking(false);
SelectionKey key = channel.register(selector,
    Selectionkey.OP_READ);

与Selector一起使用时,Channel必须处于非阻塞模式下。这意味着不能将FileChannel与Selector一起使用,因为FileChannel不能切换到非阻塞模式。而套接字通道都可以。

注意register()方法的第二个参数。这是一个“interest集合”,意思是在通过Selector监听Channel时对什么事件感兴趣。可以监听四种不同类型的事件:
Connect
Accept
Read
Write

通道触发了一个事件意思是该事件已经就绪。所以,某个channel成功连接到另一个服务器称为“连接就绪”。一个server socket channel准备好接收新进入的连接称为“接收就绪”。一个有数据可读的通道可以说是“读就绪”。等待写数据的通道可以说是“写就绪”。

这四种事件用SelectionKey的四个常量来表示:

SelectionKey.OP_CONNECT
SelectionKey.OP_ACCEPT
SelectionKey.OP_READ
SelectionKey.OP_WRITE

如果你对不止一种事件感兴趣,那么可以用“位或”操作符将常量连接起来,如下:

int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;

SelectionKey

当向Selector注册Channel时,register()方法会返回一个SelectionKey对象。这个对象包含了一些你感兴趣的属性:

interest集合
ready集合
Channel
Selector
附加的对象(可选)

下面我会描述这些属性。

interest集合

就像向Selector注册通道一节中所描述的,interest集合是你所选择的感兴趣的事件集合。可以通过SelectionKey读写interest集合,像这样:

int interestSet = selectionKey.interestOps();
boolean isInterestedInAccept  = (interestSet & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT;
boolean isInterestedInConnect = interestSet & SelectionKey.OP_CONNECT;
boolean isInterestedInRead    = interestSet & SelectionKey.OP_READ;
boolean isInterestedInWrite   = interestSet & SelectionKey.OP_WRITE;

可以看到,用“位与”操作interest 集合和给定的SelectionKey常量,可以确定某个确定的事件是否在interest 集合中。

ready集合

ready 集合是通道已经准备就绪的操作的集合。在一次选择(Selection)之后,你会首先访问这个ready set。Selection将在下一小节进行解释。可以这样访问ready集合:

int readySet = selectionKey.readyOps();

可以用像检测interest集合那样的方法,来检测channel中什么事件或操作已经就绪。但是,也可以使用以下四个方法,它们都会返回一个布尔类型:

selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();

Channe & Selector

从SelectionKey访问Channel和Selector很简单。如下:

Channel  channel  = selectionKey.channel();
Selector selector = selectionKey.selector();

附加的对象

可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。使用方法如下:

selectionKey.attach(theObject);
Object attachedObj = selectionKey.attachment();

还可以在用register()方法向Selector注册Channel的时候附加对象。如:

SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);

4)WakeUp()

某个线程调用select()方法后阻塞了,即使没有通道已经就绪,也有办法让其从select()方法返回。只要让其它线程在第一个线程调用select()方法的那个对象上调用Selector.wakeup()方法即可。阻塞在select()方法上的线程会立马返回。

如果有其它线程调用了wakeup()方法,但当前没有线程阻塞在select()方法上,下个调用select()方法的线程会立即“醒来(wake up)”。

5)close()

用完Selector后调用其close()方法会关闭该Selector,且使注册到该Selector上的所有SelectionKey实例无效。通道本身并不会关闭。

3)通过Selector选择通道

一旦向Selector注册了一或多个通道,就可以调用几个重载的select()方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道。换句话说,如果你对“读就绪”的通道感兴趣,select()方法会返回读事件已经就绪的那些通道。

下面是select()方法:

int select() 阻塞到至少有一个通道在你注册的事件上就绪了,返回的int值表示自上次调用select()方法后,有多少通道已经就绪。
int select(long timeout) 阻塞到至少有一个通道在你注册的事件上就绪了,最长会阻塞timeout毫秒
int selectNow() 不会阻塞,不管什么通道就绪都立刻返回。此方法执行非阻塞的选择操作。如果自从前一次选择操作后,没有通道变成可选择的,则此方法直接返回零。

selectedKeys()

一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问“已选择键集(selected key set)”中的就绪通道。如下所示:

Set selectedKeys = selector.selectedKeys();

当像Selector注册Channel时,Channel.register()方法会返回一个SelectionKey 对象。这个对象代表了注册到该Selector的通道。可以通过SelectionKey的selectedKeySet()方法访问这些对象。

可以遍历这个已选择的键集合来访问就绪的通道。如下:

Set selectedKeys = selector.selectedKeys();
Iterator keyIterator = selectedKeys.iterator();
while(keyIterator.hasNext()) {
    SelectionKey key = keyIterator.next();
    if(key.isAcceptable()) {
        // a connection was accepted by a ServerSocketChannel.
    } else if (key.isConnectable()) {
        // a connection was established with a remote server.
    } else if (key.isReadable()) {
        // a channel is ready for reading
    } else if (key.isWritable()) {
        // a channel is ready for writing
    }
    keyIterator.remove();
}

这个循环遍历已选择键集中的每个键,并检测各个键所对应的通道的就绪事件。

注意每次迭代末尾的keyIterator.remove()调用。Selector不会自己从已选择键集中移除SelectionKey实例。必须在处理完通道时自己移除。下次该通道变成就绪时,Selector会再次将其放入已选择键集中。

SelectionKey.channel()方法返回的通道需要转型成你要处理的类型,如ServerSocketChannel或SocketChannel等

(4)scatter / gather

分散(scatter)从Channel中读取是指在读操作时将读取的数据写入多个buffer中。因此,Channel将从Channel中读取的数据“分散(scatter)”到多个Buffer中。

聚集(gather)写入Channel是指在写操作时将多个buffer的数据写入同一个Channel,因此,Channel 将多个Buffer中的数据“聚集(gather)”后发送到Channel。

ByteBuffer header = ByteBuffer.allocate(128);
ByteBuffer body   = ByteBuffer.allocate(1024);
ByteBuffer[] bufferArray = { header, body };
channel.read(bufferArray);
ByteBuffer header = ByteBuffer.allocate(128);
ByteBuffer body   = ByteBuffer.allocate(1024);
//write data into buffers
ByteBuffer[] bufferArray = { header, body };
channel.write(bufferArray);

scatter / gather经常用于需要将传输的数据分开处理的场合,例如传输一个由消息头和消息体组成的消息,你可能会将消息体和消息头分散到不同的buffer中,这样你可以方便的处理消息头和消息体。

(5)channel之间的传输 transferFrom&transferTo

RandomAccessFile fromFile = new RandomAccessFile("fromFile.txt", "rw");
FileChannel      fromChannel = fromFile.getChannel();
RandomAccessFile toFile = new RandomAccessFile("toFile.txt", "rw");
FileChannel      toChannel = toFile.getChannel();
long position = 0;
long count = fromChannel.size();
toChannel.transferFrom(position, count, fromChannel);

RandomAccessFile fromFile = new RandomAccessFile("fromFile.txt", "rw");
FileChannel      fromChannel = fromFile.getChannel();
RandomAccessFile toFile = new RandomAccessFile("toFile.txt", "rw");
FileChannel      toChannel = toFile.getChannel();
long position = 0;
long count = fromChannel.size();
fromChannel.transferTo(position, count, toChannel);

补充、AIO编程

NIO 2.0引入了新的异步通道的概念,并提供了异步文件通道和异步套接字通道的实现。

异步的套接字通道时真正的异步非阻塞I/O,对应于UNIX网络编程中的事件驱动I/O(AIO)。他不需要过多的Selector对注册的通道进行轮询即可实现异步读写,从而简化了NIO的编程模型。

AIO的API比NIO的使用起来真的简单多了,主要就是监听、读、写等各种CompletionHandler。此处本应有一个WriteHandler的,确实,我们在ReadHandler中,以一个匿名内部类实现了它。

AIO是真正的异步非阻塞的,所以,在面对超级大量的客户端,更能得心应手

AIO网络编程demo

// AIO线程复用版
Thread sThread = new Thread(new Runnable() {
    @Override
    public void run() {
        AsynchronousChannelGroup group = null;
        try {
            group = AsynchronousChannelGroup.withThreadPool(Executors.newFixedThreadPool(4));
            AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open(group).bind(new InetSocketAddress(InetAddress.getLocalHost(), port));
            server.accept(null, new CompletionHandler<AsynchronousSocketChannel, AsynchronousServerSocketChannel>() {
                @Override
                public void completed(AsynchronousSocketChannel result, AsynchronousServerSocketChannel attachment) {
                    server.accept(null, this); // 接收下一个请求
                    try {
                        Future<Integer> f = result.write(Charset.defaultCharset().encode("你好,世界"));
                        f.get();
                        System.out.println("服务端发送时间:" + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()));
                        result.close();
                    } catch (InterruptedException | ExecutionException | IOException e) {
                        e.printStackTrace();
                    }
                }

                @Override
                public void failed(Throwable exc, AsynchronousServerSocketChannel attachment) {
                }
            });
            group.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
        } catch (IOException | InterruptedException e) {
            e.printStackTrace();
        }
    }
});
sThread.start();

// Socket 客户端
AsynchronousSocketChannel client = AsynchronousSocketChannel.open();
Future<Void> future = client.connect(new InetSocketAddress(InetAddress.getLocalHost(), port));
future.get();
ByteBuffer buffer = ByteBuffer.allocate(100);
client.read(buffer, null, new CompletionHandler<Integer, Void>() {
    @Override
    public void completed(Integer result, Void attachment) {
        System.out.println("客户端打印:" + new String(buffer.array()));
    }

    @Override
    public void failed(Throwable exc, Void attachment) {
        exc.printStackTrace();
        try {
            client.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
});
Thread.sleep(10 * 1000);


这篇关于Java NIO 总结的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程