D001.6 Docker搭建Hadoop集群(资源篇)
2021/6/10 18:30:16
本文主要是介绍D001.6 Docker搭建Hadoop集群(资源篇),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
教程目录
- 0x00 教程内容
- 0x01 Dockerfile的编写
- 1. Dockerfile文件
- 0x02 Hadoop相关配置文件
- 1. ssh_config
- 2. profile
- 3. hadoop-env.sh
- 4. core-site.xml
- 5. hdfs-site.xml
- 6. master
- 7. slaves
- 8. mapred-site.xml
- 9. yarn-site.xml
- 0x03 构建脚本
- 1. 构建容器网络脚本(build.sh)
- 2. 构建容器脚本(build_network.sh)
- 0x04 启动脚本
- 1. 启动容器(start_containers.sh)
- 2. 停止容器(stop_containers.sh)
- 3. 启动Hadoop集群(start_hadoop.sh)
- 0xFF 总结
- Dockerfile的编写
- Hadoop相关配置文件
- 构建脚本
- 启动脚本
1. Dockerfile文件
FROM ubuntu MAINTAINER shaonaiyi shaonaiyi@163.com ENV BUILD_ON 2017-10-12 RUN apt-get update -qqy RUN apt-get -qqy install vim wget net-tools iputils-ping openssh-server ADD ./jdk-8u161-linux-x64.tar.gz /usr/local/ ADD ./hadoop-2.7.5.tar.gz /usr/local #增加JAVA_HOME环境变量 ENV JAVA_HOME /usr/local/jdk1.8.0_161 ENV HADOOP_HOME /usr/local/hadoop-2.7.5 ENV PATH $HADOOP_HOME/bin:$JAVA_HOME/bin:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$PATH RUN ssh-keygen -t rsa -f ~/.ssh/id_rsa -P '' && \ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys && \ chmod 600 ~/.ssh/authorized_keys COPY config /tmp RUN mv /tmp/ssh_config ~/.ssh/config && \ mv /tmp/hadoop-env.sh $HADOOP_HOME/etc/hadoop/hadoop-env.sh && \ mv /tmp/hdfs-site.xml $HADOOP_HOME/etc/hadoop/hdfs-site.xml && \ mv /tmp/core-site.xml $HADOOP_HOME/etc/hadoop/core-site.xml && \ mv /tmp/yarn-site.xml $HADOOP_HOME/etc/hadoop/yarn-site.xml && \ mv /tmp/mapred-site.xml $HADOOP_HOME/etc/hadoop/mapred-site.xml && \ mv /tmp/master $HADOOP_HOME/etc/hadoop/master && \ mv /tmp/slaves $HADOOP_HOME/etc/hadoop/slaves && \ mv /tmp/start-hadoop.sh ~/start-hadoop.sh && \ mkdir -p /usr/local/hadoop2.7/dfs/data && \ mkdir -p /usr/local/hadoop2.7/dfs/name RUN echo $JAVA_HOME WORKDIR /root RUN /etc/init.d/ssh start CMD ["/bin/bash"]0x02 Hadoop相关配置文件
1. ssh_config
Host localhost StrictHostKeyChecking no Host 0.0.0.0 StrictHostKeyChecking no Host hadoop-* StrictHostKeyChecking no
2. profile
# /etc/profile: system-wide .profile file for the Bourne shell (sh(1)) # and Bourne compatible shells (bash(1), ksh(1), ash(1), ...). if [ "$PS1" ]; then if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then # The file bash.bashrc already sets the default PS1. # PS1='\h:\w\$ ' if [ -f /etc/bash.bashrc ]; then . /etc/bash.bashrc fi else if [ "`id -u`" -eq 0 ]; then PS1='# ' else PS1='$ ' fi fi fi if [ -d /etc/profile.d ]; then for i in /etc/profile.d/*.sh; do if [ -r $i ]; then . $i fi done unset i fi export JAVA_HOME=/usr/local/jdk1.8.0_161 export SCALA_HOME=/usr/local/scala-2.11.8 export HADOOP_HOME=/usr/local/hadoop-2.7.5 export SPARK_HOME=/usr/local/spark-2.2.0-bin-hadoop2.7 export PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH
3. hadoop-env.sh
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Set Hadoop-specific environment variables here. # The only required environment variable is JAVA_HOME. All others are # optional. When running a distributed configuration it is best to # set JAVA_HOME in this file, so that it is correctly defined on # remote nodes. # The java implementation to use. export JAVA_HOME=/usr/local/jdk1.8.0_161 # The jsvc implementation to use. Jsvc is required to run secure datanodes # that bind to privileged ports to provide authentication of data transfer # protocol. Jsvc is not required if SASL is configured for authentication of # data transfer protocol using non-privileged ports. #export JSVC_HOME=${JSVC_HOME} export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"} # Extra Java CLASSPATH elements. Automatically insert capacity-scheduler. for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do if [ "$HADOOP_CLASSPATH" ]; then export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f else export HADOOP_CLASSPATH=$f fi done # The maximum amount of heap to use, in MB. Default is 1000. #export HADOOP_HEAPSIZE= #export HADOOP_NAMENODE_INIT_HEAPSIZE="" # Extra Java runtime options. Empty by default. export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true" # Command specific options appended to HADOOP_OPTS when specified export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS" export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS" export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS" export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS" export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS" # The following applies to multiple commands (fs, dfs, fsck, distcp etc) export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS" #HADOOP_JAVA_PLATFORM_OPTS="-XX:-UsePerfData $HADOOP_JAVA_PLATFORM_OPTS" # On secure datanodes, user to run the datanode as after dropping privileges. # This **MUST** be uncommented to enable secure HDFS if using privileged ports # to provide authentication of data transfer protocol. This **MUST NOT** be # defined if SASL is configured for authentication of data transfer protocol # using non-privileged ports. export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER} # Where log files are stored. $HADOOP_HOME/logs by default. #export HADOOP_LOG_DIR=${HADOOP_LOG_DIR}/$USER # Where log files are stored in the secure data environment. export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER} ### # HDFS Mover specific parameters ### # Specify the JVM options to be used when starting the HDFS Mover. # These options will be appended to the options specified as HADOOP_OPTS # and therefore may override any similar flags set in HADOOP_OPTS # # export HADOOP_MOVER_OPTS="" ### # Advanced Users Only! ### # The directory where pid files are stored. /tmp by default. # NOTE: this should be set to a directory that can only be written to by # the user that will run the hadoop daemons. Otherwise there is the # potential for a symlink attack. export HADOOP_PID_DIR=${HADOOP_PID_DIR} export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR} # A string representing this instance of hadoop. $USER by default. export HADOOP_IDENT_STRING=$USER
4. core-site.xml
<?xml version="1.0"?> <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://hadoop-maste:9000/</value> </property> <property> <name>hadoop.tmp.dir</name> <value>file:/usr/local/hadoop/tmp</value> </property> <property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.oozie.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.oozie.groups</name> <value>*</value> </property> </configuration>
5. hdfs-site.xml
<?xml version="1.0"?> <configuration> <property> <name>dfs.namenode.name.dir</name> <value>file:/usr/local/hadoop2.7/dfs/name</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/usr/local/hadoop2.7/dfs/data</value> </property> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.permissions.enabled</name> <value>false</value> </property> </configuration>
6. master
hadoop-maste
7. slaves
hadoop-node1 hadoop-node2
8. mapred-site.xml
<?xml version="1.0"?> <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <!-- 配置实际的Master主机名和端口--> <value>hadoop-maste:10020</value> </property> <property> <name>mapreduce.map.memory.mb</name> <value>4096</value> </property> <property> <name>mapreduce.reduce.memory.mb</name> <value>8192</value> </property> <property> <name>yarn.app.mapreduce.am.staging-dir</name> <value>/stage</value> </property> <property> <name>mapreduce.jobhistory.done-dir</name> <value>/mr-history/done</value> </property> <property> <name>mapreduce.jobhistory.intermediate-done-dir</name> <value>/mr-history/tmp</value> </property> </configuration>
9. yarn-site.xml
<?xml version="1.0"?> <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>hadoop-maste</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>hadoop-maste:8032</value> </property> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>hadoop-maste:8030</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address</name> <value>hadoop-maste:8035</value> </property> <property> <name>yarn.resourcemanager.admin.address</name> <value>hadoop-maste:8033</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>hadoop-maste:8088</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>5</value> </property> <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>22528</value> <discription>每个节点可用内存,单位MB</discription> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>4096</value> <discription>单个任务可申请最少内存,默认1024MB</discription> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>16384</value> <discription>单个任务可申请最大内存,默认8192MB</discription> </property> </configuration>0x03 构建脚本
1. 构建容器网络脚本(build.sh)
echo create network docker network create --subnet=172.20.0.0/16 bigdata echo create success docker network ls
2. 构建容器脚本(build_network.sh)
echo build hadoop images docker build -t="hadoop" .0x04 启动脚本
1. 启动容器(start_containers.sh)
echo start hadoop-maste container... docker rm -f hadoop-master &> /dev/null docker run -itd --restart=always \--net bigdata \--ip 172.20.0.2 \--privileged \-p 18032:8032 \-p 28080:18080 \-p 29888:19888 \-p 17077:7077 \-p 51070:50070 \-p 18088:8088 \-p 19000:9000 \-p 11100:11000 \-p 51030:50030 \-p 18050:8050 \-p 18081:8081 \-p 18900:8900 \--name hadoop-maste \ --hostname hadoop-maste \--add-host hadoop-node1:172.20.0.3 \--add-host hadoop-node2:172.20.0.4 shaonaiyi/hadoop /bin/bash echo "start hadoop-node1 container..." docker run -itd --restart=always \--net bigdata \--ip 172.20.0.3 \--privileged \-p 18042:8042 \-p 51010:50010 \-p 51020:50020 \--name hadoop-node1 \--hostname hadoop-node1 \--add-host hadoop-maste:172.20.0.2 \--add-host hadoop-node2:172.20.0.4 shaonaiyi/hadoop /bin/bash echo "start hadoop-node2 container..." docker run -itd --restart=always \--net bigdata \--ip 172.20.0.4 \--privileged \-p 18043:8042 \-p 51011:50011 \-p 51021:50021 \--name hadoop-node2 \--hostname hadoop-node2 --add-host hadoop-maste:172.20.0.2 \--add-host hadoop-node1:172.20.0.3 shaonaiyi/hadoop /bin/bash echo start sshd... docker exec -it hadoop-maste /etc/init.d/ssh start docker exec -it hadoop-node1 /etc/init.d/ssh start docker exec -it hadoop-node2 /etc/init.d/ssh start echo finished docker ps
2. 停止容器(stop_containers.sh)
docker stop hadoop-maste docker stop hadoop-node1 docker stop hadoop-node2 echo stop containers docker rm hadoop-maste docker rm hadoop-node1 docker rm hadoop-node2 echo rm containers docker ps
3. 启动Hadoop集群(start_hadoop.sh)
#!/bin/bash echo -e "\n" hdfs namenode -format echo -e "\n" $HADOOP_HOME/sbin/start-dfs.sh echo -e "\n" $HADOOP_HOME/sbin/start-yarn.sh echo -e "\n" hdfs dfs -mkdir /mr-history hdfs dfs -mkdir /stage echo -e "\n"0xFF 总结
- 本篇教程为Docker搭建Hadoop大数据集群的资源篇,适合有基础的同学,没有基础也没关系。请继续学习:D001.7 Docker搭建Hadoop集群(实践篇)
- 目录结构如下:
- config文件夹如下:
- 常规安装请查看教程:Hadoop核心组件之HDFS的安装与配置
- 如需要获取资源,除了参考本博文,还可以加微信:shaonaiyi888获取
作者简介:邵奈一
全栈工程师、市场洞察者、专栏编辑
| 公众号 | 微信 | 微博 | CSDN | 简书 |
福利:
邵奈一的技术博客导航
邵奈一 原创不易,如转载请标明出处。
这篇关于D001.6 Docker搭建Hadoop集群(资源篇)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-20Docker部署资料:新手入门教程
- 2024-12-19Docker部署实战:新手入门教程
- 2024-12-19Docker部署教程:新手入门详解
- 2024-12-09云原生周刊:在Docker上部署大语言模型
- 2024-12-05Docker教程:新手快速入门指南
- 2024-12-05Docker项目实战:新手教程与案例解析
- 2024-12-04Docker入门教程:快速掌握基础操作
- 2024-12-04Docker入门教程:轻松搭建你的第一个容器化应用
- 2024-12-04Docker-Compose 入门教程:全面解析基础命令与应用场景
- 2024-12-04Docker入门:新手必读的简单教程