java读取文件中的数字,看完这一篇你就懂了

2021/6/17 14:26:43

本文主要是介绍java读取文件中的数字,看完这一篇你就懂了,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

前言

今天刚好有空,跟大家聊聊如何学好算法进大厂。

前两天一个读者和我说,他坚持刷算法题2个月,薪资翻番去了他梦寐以求的大厂,期间面字节跳动还遇到了原题…其实据我所知目前国内的大厂和一些独角兽,已经越来越效仿硅谷公司的做法,通过编程定题面试,来考察数据结构和算法的扎实程度。

以我的经验来说,**对于新手来说,扎实的掌握一门语言是其一,其二就是要有基本的算法能力,这个非常重要。对于进阶的用户,更多技术栈的掌握就是必须的了。另外,还需要你学习高阶算法,掌握这些技术栈匹配的算法技能。**现在很多大厂技术面试的要求是:技术要好,计算机基础扎实,熟练掌握算法和数据结构,语言不重要,熟练度很重要。每一轮技术面试不只考算法,但一定会考算法。

为什么这几年算法成了其中必要的一个环节?因为考察算法的核心就是,看候选人是不是足够聪明!很多大厂的算法面试题一般对应的是 LeetCode 中级模式,一般会直接让你说思路或上手写代码。

要通过面试,你肯定得花时间好好准备。但是只靠刷题去提升算法能力,进度太慢,而且还容易抓不住重点很难坚持,并且没有完整的学习体系,也没人指导,导致最后的结果就是一知半解,浪费了大量的时间成本。

系统介绍

整个系统可以从功能上分为3块:

  1. 业务系统:在上游有很多的业务系统,业务系统的运行产生很多的数据,这些数据分散在很多的数据库中,大部分是MySQL数据库
  2. 数据智能平台:数据智能平台属于中台系统,主要为业务系统提供强大的数据支撑服务,下层连接数仓。
  3. 数据仓库: 数据仓库统一集中的管理所有的数据,数仓会将业务系统产生的数据按天进行加工、抽取、转换到数据仓库存储。

当一天结束后,各个业务系统产生了大量的数据,这些数据由定时任务进行加工、抽取到数据仓库存储,当半夜你还在睡觉的时候,这些定时任务就在默默的运行着。

而每天加工的数据通常要求在上班工作时间之前加工完成,然后通过数据智能平台的查询系统供业务系统查询调用,这一次数据没有查询到是因为在第二天早上10点,数据还没有加工完成。下面就是找问题优化了,因为正常来讲,即使定时任务链再长,也不会慢到第二天10点钟数据还没有出来。下面就是找问题,然后进行优化了。

任务优化

通过任务日志发现有一个上游系统的数据抽取执行时间有3个小时,而数据量仅100万。当然,光凭这样还无法确定这个任务是否是可以被优化的。

查看任务代码,逻辑还比较简单:有一张原始数据表,记录商品信息以及定义的分类(这一点是虚构的,实际情况要复杂一些,我这里精简然后转换了一下,便于理解),而数仓的目标表是将分类和商品分别存储在不同的表中,大致结构如下。

那为什么需要进行这样的转换呢? 这是因为整个大的系统,一般来说只能定义一些基本的规范,而具体的细节规范则无法约束,比如A系统的身份证字段名称为card_no,而B系统的身份证字段名称为crdt_no(这种情况大家应该经常遇到);再比如处理实体关系的时候,处理方式也是不同的,1对1的关系,可以建两张表关联,也可以一张表都存储,这就造成了多个系统的不统一性,而这种情况是不可避免的,因为从业务系统来说,都保证了系统的正常运行。

而数仓对多个原始数据处理的时候就需要考虑到兼容的问题,所以就会出现如上图的转换过程。

而这个任务执行3个小时的原因在于原始表中的一条记录,会转换到数仓表中的三张表中,而且这三张表是通过id进行关联,整个代码流程如下。

然而问题来了,100万的数据,跑了3个小时,然后我开始尝试去优化程序的执行流程,大概从一下几点入手

  1. 将分类缓存,分类在系统中已经固定,不会发生变化,缓存可以减少查询数据库的次数
  2. 每次从原表中读取的数据更多,从原来的500/次 -> 2000/次

经过优化,效率有一些提升,但并不是很明显(有同学可能要问了,这些都是很基本的,为什么最开始做? 咳咳。。。这个嘛,历史原因吧,在最开始数据可能不多,不论以什么方式执行,都差别不大,比如执行10分钟和执行20分钟,看似2倍的执行效率,但是由于没有影响到业务系统,且一直正常运行,也就没有看出问题)。

这里数据是需要关联的,所以我们是需要插入数据并拿到这条记录的自增长id,然后插入到关联表,而表结构基本不可能去动的(表结构动了那真是牵一发而动全身了,第二天准得被叫去喝茶)。

那么我们先来分析一下这里为什么执行这么慢呢。

  1. 原表100万的数据,每次查询出2000条,所以查询的总次数就是1000000/2000 = 500次,这肯定消耗不了多少时间。这里基本没有优化的空间,就算一次全部查询出来,也仅仅节省499次的查询时间(也不可能一次查询这么多数据)
  2. 查询的2000条数据,数据转换,然后依次插入到信息表以及关联表中,这里是一条一条解析执行的,总计插入数据库4000次,毫无疑问,这里是最耗时的。数据转换是必须的,而且是在内存中操作,所以耗时不是特别多;那么剩下的就是总计100万 * 2的数据库插入次数,能否进行优化呢?

首先想到的就是批量插入,批量插入可以有效的降低数据库访问次数。但是这里不能进行批量插入是因为需要取到自增长id,感觉陷入了困境。

当天晚上昨晚运动之后,抛开烦恼,觉得浑身舒坦。

突然,脑袋灵光一闪,数据库的自增长id是由数据库控制的数值,而自增长的步长我们是知道的,比如自增长步长为1,当前自增长id为1的话,那么可以肯定,下一条记录的自增长id就为2,以此类推。

那是否可以插入一条记录,取到自增长id,然后就可以计算出之后所有数据的自增长id,而不再需要每条记录都去取自增长id了。

但是这样也有一个问题,就是在数据转换导入的过程中,不能有其他的程序向表中插入数据,不然会导致程序计算的自增长id匹配不上。而这个问题根本不存在,因为数仓的数据都是由原始表计算插入的,在同一时间是没有其他的任务写这张表,那么我们就可以放心大胆的干了。

总结

我们总是喜欢瞻仰大厂的大神们,但实际上大神也不过凡人,与菜鸟程序员相比,也就多花了几分心思,如果你再不努力,差距也只会越来越大。实际上,作为程序员,丰富自己的知识储备,提升自己的知识深度和广度是很有必要的。

送大家一份资料,戳这里免费领取

Mybatis源码解析

DSmxTbFJ1cmN1R2dB)**

Mybatis源码解析

[外链图片转存中…(img-yrIzEtZN-1623909045010)]



这篇关于java读取文件中的数字,看完这一篇你就懂了的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程