更正SimpleDateFormat类线程不安全问题分析的错误

2021/6/18 23:34:11

本文主要是介绍更正SimpleDateFormat类线程不安全问题分析的错误,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

写在前面

最近,有小伙伴看了我写的《深入理解高并发编程(第1版)》或者在 冰河技术 公号看了《高并发之——SimpleDateFormat类的线程安全问题和解决方案》一文,对文中SimpleDateFormat类线程不安全问题的分析产生了疑惑,并留言或者私信我说明了自己对问题的理解和建议。

在这里插入图片描述

于是,我赶紧打开IDEA,下载了一套JDK8的Java源码,开始在JDK8源码中添加各种日志和debug,最终证实,《高并发之——SimpleDateFormat类的线程安全问题和解决方案》一文中对于问题的分析确实是出现了错误。

注:《深入理解高并发编程(第1版)》电子书中的内容已更正,小伙伴们可在 冰河技术 公号回复 “并发编程” 获取。感谢小伙伴们及时指出问题,尤其是“武儿”小伙伴,可以加我微信领红包~~

错误的分析结果

《高并发之——SimpleDateFormat类的线程安全问题和解决方案》一种中,对于SimpleDateFormat类线程不安全问题的分析结论如下:

通过对SimpleDateFormat类中的parse(String, ParsePosition)方法的分析可以得知,parse(String, ParsePosition)方法中存在几处为ParsePosition类中的索引赋值的操作。

一旦将SimpleDateFormat类定义成全局的静态变量,那么SimpleDateFormat类在多个线程间是共享的,这就导致ParsePosition类在多个线程间共享。在高并发场景下,一个线程对ParsePosition类中的索引进行修改,势必会影响到其他线程对ParsePosition类中索引的读操作。这就造成了线程的安全问题。

以上问题分析的结论确实存在错误。

更正分析结果

那么,接下来,我们就一起来看看真正引起SimpleDateFormat类线程不安全的根本原因。

通过查看SimpleDateFormat类的源码,我们得知:SimpleDateFormat是继承自DateFormat类,DateFormat类中维护了一个全局的Calendar变量,如下所示。

/**
  * The {@link Calendar} instance used for calculating the date-time fields
  * and the instant of time. This field is used for both formatting and
  * parsing.
  *
  * <p>Subclasses should initialize this field to a {@link Calendar}
  * appropriate for the {@link Locale} associated with this
  * <code>DateFormat</code>.
  * @serial
  */
protected Calendar calendar;

从注释可以看出,这个Calendar对象既用于格式化也用于解析日期时间。接下来,我们再查看parse()方法接近最后的部分。

@Override
public Date parse(String text, ParsePosition pos){
    ################此处省略N行代码##################
    Date parsedDate;
    try {
        parsedDate = calb.establish(calendar).getTime();
        // If the year value is ambiguous,
        // then the two-digit year == the default start year
        if (ambiguousYear[0]) {
            if (parsedDate.before(defaultCenturyStart)) {
                parsedDate = calb.addYear(100).establish(calendar).getTime();
            }
        }
    }
    // An IllegalArgumentException will be thrown by Calendar.getTime()
    // if any fields are out of range, e.g., MONTH == 17.
    catch (IllegalArgumentException e) {
        pos.errorIndex = start;
        pos.index = oldStart;
        return null;
    }
    return parsedDate;
}

可见,最后的返回值是通过调用CalendarBuilder.establish()方法获得的,而这个方法的参数正好就是前面的Calendar对象。

接下来,我们再来看看CalendarBuilder.establish()方法,如下所示。

Calendar establish(Calendar cal) {
    boolean weekDate = isSet(WEEK_YEAR)
        && field[WEEK_YEAR] > field[YEAR];
    if (weekDate && !cal.isWeekDateSupported()) {
        // Use YEAR instead
        if (!isSet(YEAR)) {
            set(YEAR, field[MAX_FIELD + WEEK_YEAR]);
        }
        weekDate = false;
    }

    cal.clear();
    // Set the fields from the min stamp to the max stamp so that
    // the field resolution works in the Calendar.
    for (int stamp = MINIMUM_USER_STAMP; stamp < nextStamp; stamp++) {
        for (int index = 0; index <= maxFieldIndex; index++) {
            if (field[index] == stamp) {
                cal.set(index, field[MAX_FIELD + index]);
                break;
            }
        }
    }

    if (weekDate) {
        int weekOfYear = isSet(WEEK_OF_YEAR) ? field[MAX_FIELD + WEEK_OF_YEAR] : 1;
        int dayOfWeek = isSet(DAY_OF_WEEK) ?
            field[MAX_FIELD + DAY_OF_WEEK] : cal.getFirstDayOfWeek();
        if (!isValidDayOfWeek(dayOfWeek) && cal.isLenient()) {
            if (dayOfWeek >= 8) {
                dayOfWeek--;
                weekOfYear += dayOfWeek / 7;
                dayOfWeek = (dayOfWeek % 7) + 1;
            } else {
                while (dayOfWeek <= 0) {
                    dayOfWeek += 7;
                    weekOfYear--;
                }
            }
            dayOfWeek = toCalendarDayOfWeek(dayOfWeek);
        }
        cal.setWeekDate(field[MAX_FIELD + WEEK_YEAR], weekOfYear, dayOfWeek);
    }
    return cal;
}

在CalendarBuilder.establish()方法中先后调用了cal.clear()与cal.set(),也就是先清除cal对象中设置的值,再重新设置新的值。由于Calendar内部并没有线程安全机制,并且这两个操作也都不是原子性的,所以当多个线程同时操作一个SimpleDateFormat时就会引起cal的值混乱。类似地, format()方法也存在同样的问题。

因此, SimpleDateFormat类不是线程安全的根本原因是:DateFormat类中的Calendar对象被多线程共享,而Calendar对象本身不支持线程安全。

再次感谢小伙伴们及时反馈问题,尤其是“武儿”小伙伴,可以加我微信领红包~~

注:《深入理解高并发编程(第1版)》电子书中的内容已更正,小伙伴们可在 冰河技术 公号回复 “并发编程” 获取。

附录更正后的完整文章

SimpleDateFormat类的线程安全问题和解决方案

首先问下大家:你使用的SimpleDateFormat类还安全吗?为什么说SimpleDateFormat类不是线程安全的?带着问题从本文中寻求答案。

提起SimpleDateFormat类,想必做过Java开发的童鞋都不会感到陌生。没错,它就是Java中提供的日期时间的转化类。这里,为什么说SimpleDateFormat类有线程安全问题呢?有些小伙伴可能会提出疑问:我们生产环境上一直在使用SimpleDateFormat类来解析和格式化日期和时间类型的数据,一直都没有问题啊!我的回答是:没错,那是因为你们的系统达不到SimpleDateFormat类出现问题的并发量,也就是说你们的系统没啥负载!

接下来,我们就一起看下在高并发下SimpleDateFormat类为何会出现安全问题,以及如何解决SimpleDateFormat类的安全问题。

重现SimpleDateFormat类的线程安全问题

为了重现SimpleDateFormat类的线程安全问题,一种比较简单的方式就是使用线程池结合Java并发包中的CountDownLatch类和Semaphore类来重现线程安全问题。

有关CountDownLatch类和Semaphore类的具体用法和底层原理与源码解析在【高并发专题】后文会深度分析。这里,大家只需要知道CountDownLatch类可以使一个线程等待其他线程各自执行完毕后再执行。而Semaphore类可以理解为一个计数信号量,必须由获取它的线程释放,经常用来限制访问某些资源的线程数量,例如限流等。

好了,先来看下重现SimpleDateFormat类的线程安全问题的代码,如下所示。

package io.binghe.concurrent.lab06;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 测试SimpleDateFormat的线程不安全问题
 */
public class SimpleDateFormatTest01 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;
    //SimpleDateFormat对象
    private static SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        simpleDateFormat.parse("2020-01-01");
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

可以看到,在SimpleDateFormatTest01类中,首先定义了两个常量,一个是程序执行的总次数,一个是同时运行的线程数量。程序中结合线程池和CountDownLatch类与Semaphore类来模拟高并发的业务场景。其中,有关日期转化的代码只有如下一行。

simpleDateFormat.parse("2020-01-01");

当程序捕获到异常时,打印相关的信息,并退出整个程序的运行。当程序正确运行后,会打印“所有线程格式化日期成功”。

运行程序输出的结果信息如下所示。

Exception in thread "pool-1-thread-4" Exception in thread "pool-1-thread-1" Exception in thread "pool-1-thread-2" 线程:pool-1-thread-7 格式化日期失败
线程:pool-1-thread-9 格式化日期失败
线程:pool-1-thread-10 格式化日期失败
Exception in thread "pool-1-thread-3" Exception in thread "pool-1-thread-5" Exception in thread "pool-1-thread-6" 线程:pool-1-thread-15 格式化日期失败
线程:pool-1-thread-21 格式化日期失败
Exception in thread "pool-1-thread-23" 线程:pool-1-thread-16 格式化日期失败
线程:pool-1-thread-11 格式化日期失败
java.lang.ArrayIndexOutOfBoundsException
线程:pool-1-thread-27 格式化日期失败
	at java.lang.System.arraycopy(Native Method)
	at java.lang.AbstractStringBuilder.append(AbstractStringBuilder.java:597)
	at java.lang.StringBuffer.append(StringBuffer.java:367)
	at java.text.DigitList.getLong(DigitList.java:191)线程:pool-1-thread-25 格式化日期失败

	at java.text.DecimalFormat.parse(DecimalFormat.java:2084)
	at java.text.SimpleDateFormat.subParse(SimpleDateFormat.java:1869)
	at java.text.SimpleDateFormat.parse(SimpleDateFormat.java:1514)
线程:pool-1-thread-14 格式化日期失败
	at java.text.DateFormat.parse(DateFormat.java:364)
	at io.binghe.concurrent.lab06.SimpleDateFormatTest01.lambda$main$0(SimpleDateFormatTest01.java:47)
线程:pool-1-thread-13 格式化日期失败	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

	at java.lang.Thread.run(Thread.java:748)
java.lang.NumberFormatException: For input string: ""
	at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
线程:pool-1-thread-20 格式化日期失败	at java.lang.Long.parseLong(Long.java:601)
	at java.lang.Long.parseLong(Long.java:631)

	at java.text.DigitList.getLong(DigitList.java:195)
	at java.text.DecimalFormat.parse(DecimalFormat.java:2084)
	at java.text.SimpleDateFormat.subParse(SimpleDateFormat.java:2162)
	at java.text.SimpleDateFormat.parse(SimpleDateFormat.java:1514)
	at java.text.DateFormat.parse(DateFormat.java:364)
	at io.binghe.concurrent.lab06.SimpleDateFormatTest01.lambda$main$0(SimpleDateFormatTest01.java:47)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
java.lang.NumberFormatException: For input string: ""
	at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
	at java.lang.Long.parseLong(Long.java:601)
	at java.lang.Long.parseLong(Long.java:631)
	at java.text.DigitList.getLong(DigitList.java:195)
	at java.text.DecimalFormat.parse(DecimalFormat.java:2084)
	at java.text.SimpleDateFormat.subParse(SimpleDateFormat.java:1869)
	at java.text.SimpleDateFormat.parse(SimpleDateFormat.java:1514)
	at java.text.DateFormat.parse(DateFormat.java:364)

Process finished with exit code 1

说明,在高并发下使用SimpleDateFormat类格式化日期时抛出了异常,SimpleDateFormat类不是线程安全的!!!

接下来,我们就看下,SimpleDateFormat类为何不是线程安全的。

SimpleDateFormat类为何不是线程安全的?

那么,接下来,我们就一起来看看真正引起SimpleDateFormat类线程不安全的根本原因。

通过查看SimpleDateFormat类的源码,我们得知:SimpleDateFormat是继承自DateFormat类,DateFormat类中维护了一个全局的Calendar变量,如下所示。

/**
  * The {@link Calendar} instance used for calculating the date-time fields
  * and the instant of time. This field is used for both formatting and
  * parsing.
  *
  * <p>Subclasses should initialize this field to a {@link Calendar}
  * appropriate for the {@link Locale} associated with this
  * <code>DateFormat</code>.
  * @serial
  */
protected Calendar calendar;

从注释可以看出,这个Calendar对象既用于格式化也用于解析日期时间。接下来,我们再查看parse()方法接近最后的部分。

@Override
public Date parse(String text, ParsePosition pos){
    ################此处省略N行代码##################
    Date parsedDate;
    try {
        parsedDate = calb.establish(calendar).getTime();
        // If the year value is ambiguous,
        // then the two-digit year == the default start year
        if (ambiguousYear[0]) {
            if (parsedDate.before(defaultCenturyStart)) {
                parsedDate = calb.addYear(100).establish(calendar).getTime();
            }
        }
    }
    // An IllegalArgumentException will be thrown by Calendar.getTime()
    // if any fields are out of range, e.g., MONTH == 17.
    catch (IllegalArgumentException e) {
        pos.errorIndex = start;
        pos.index = oldStart;
        return null;
    }
    return parsedDate;
}

可见,最后的返回值是通过调用CalendarBuilder.establish()方法获得的,而这个方法的参数正好就是前面的Calendar对象。

接下来,我们再来看看CalendarBuilder.establish()方法,如下所示。

Calendar establish(Calendar cal) {
    boolean weekDate = isSet(WEEK_YEAR)
        && field[WEEK_YEAR] > field[YEAR];
    if (weekDate && !cal.isWeekDateSupported()) {
        // Use YEAR instead
        if (!isSet(YEAR)) {
            set(YEAR, field[MAX_FIELD + WEEK_YEAR]);
        }
        weekDate = false;
    }

    cal.clear();
    // Set the fields from the min stamp to the max stamp so that
    // the field resolution works in the Calendar.
    for (int stamp = MINIMUM_USER_STAMP; stamp < nextStamp; stamp++) {
        for (int index = 0; index <= maxFieldIndex; index++) {
            if (field[index] == stamp) {
                cal.set(index, field[MAX_FIELD + index]);
                break;
            }
        }
    }

    if (weekDate) {
        int weekOfYear = isSet(WEEK_OF_YEAR) ? field[MAX_FIELD + WEEK_OF_YEAR] : 1;
        int dayOfWeek = isSet(DAY_OF_WEEK) ?
            field[MAX_FIELD + DAY_OF_WEEK] : cal.getFirstDayOfWeek();
        if (!isValidDayOfWeek(dayOfWeek) && cal.isLenient()) {
            if (dayOfWeek >= 8) {
                dayOfWeek--;
                weekOfYear += dayOfWeek / 7;
                dayOfWeek = (dayOfWeek % 7) + 1;
            } else {
                while (dayOfWeek <= 0) {
                    dayOfWeek += 7;
                    weekOfYear--;
                }
            }
            dayOfWeek = toCalendarDayOfWeek(dayOfWeek);
        }
        cal.setWeekDate(field[MAX_FIELD + WEEK_YEAR], weekOfYear, dayOfWeek);
    }
    return cal;
}

在CalendarBuilder.establish()方法中先后调用了cal.clear()与cal.set(),也就是先清除cal对象中设置的值,再重新设置新的值。由于Calendar内部并没有线程安全机制,并且这两个操作也都不是原子性的,所以当多个线程同时操作一个SimpleDateFormat时就会引起cal的值混乱。类似地, format()方法也存在同样的问题。

因此, SimpleDateFormat类不是线程安全的根本原因是:DateFormat类中的Calendar对象被多线程共享,而Calendar对象本身不支持线程安全。

那么,得知了SimpleDateFormat类不是线程安全的,以及造成SimpleDateFormat类不是线程安全的原因,那么如何解决这个问题呢?接下来,我们就一起探讨下如何解决SimpleDateFormat类在高并发场景下的线程安全问题。

解决SimpleDateFormat类的线程安全问题

解决SimpleDateFormat类在高并发场景下的线程安全问题可以有多种方式,这里,就列举几个常用的方式供参考,大家也可以在评论区给出更多的解决方案。

1.局部变量法

最简单的一种方式就是将SimpleDateFormat类对象定义成局部变量,如下所示的代码,将SimpleDateFormat类对象定义在parse(String)方法的上面,即可解决问题。

package io.binghe.concurrent.lab06;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 局部变量法解决SimpleDateFormat类的线程安全问题
 */
public class SimpleDateFormatTest02 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
                        simpleDateFormat.parse("2020-01-01");
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

此时运行修改后的程序,输出结果如下所示。

所有线程格式化日期成功

至于在高并发场景下使用局部变量为何能解决线程的安全问题,会在【JVM专题】的JVM内存模式相关内容中深入剖析,这里不做过多的介绍了。

当然,这种方式在高并发下会创建大量的SimpleDateFormat类对象,影响程序的性能,所以,这种方式在实际生产环境不太被推荐。

2.synchronized锁方式

将SimpleDateFormat类对象定义成全局静态变量,此时所有线程共享SimpleDateFormat类对象,此时在调用格式化时间的方法时,对SimpleDateFormat对象进行同步即可,代码如下所示。

package io.binghe.concurrent.lab06;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过Synchronized锁解决SimpleDateFormat类的线程安全问题
 */
public class SimpleDateFormatTest03 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;
    //SimpleDateFormat对象
    private static SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        synchronized (simpleDateFormat){
                            simpleDateFormat.parse("2020-01-01");
                        }
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

此时,解决问题的关键代码如下所示。

synchronized (simpleDateFormat){
	simpleDateFormat.parse("2020-01-01");
}

运行程序,输出结果如下所示。

所有线程格式化日期成功

需要注意的是,虽然这种方式能够解决SimpleDateFormat类的线程安全问题,但是由于在程序的执行过程中,为SimpleDateFormat类对象加上了synchronized锁,导致同一时刻只能有一个线程执行parse(String)方法。此时,会影响程序的执行性能,在要求高并发的生产环境下,此种方式也是不太推荐使用的。

3.Lock锁方式

Lock锁方式与synchronized锁方式实现原理相同,都是在高并发下通过JVM的锁机制来保证程序的线程安全。通过Lock锁方式解决问题的代码如下所示。

package io.binghe.concurrent.lab06;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过Lock锁解决SimpleDateFormat类的线程安全问题
 */
public class SimpleDateFormatTest04 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;
    //SimpleDateFormat对象
    private static SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
    //Lock对象
    private static Lock lock = new ReentrantLock();

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        lock.lock();
                        simpleDateFormat.parse("2020-01-01");
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }finally {
                        lock.unlock();
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

通过代码可以得知,首先,定义了一个Lock类型的全局静态变量作为加锁和释放锁的句柄。然后在simpleDateFormat.parse(String)代码之前通过lock.lock()加锁。这里需要注意的一点是:为防止程序抛出异常而导致锁不能被释放,一定要将释放锁的操作放到finally代码块中,如下所示。

finally {
	lock.unlock();
}

运行程序,输出结果如下所示。

所有线程格式化日期成功

此种方式同样会影响高并发场景下的性能,不太建议在高并发的生产环境使用。

4.ThreadLocal方式

使用ThreadLocal存储每个线程拥有的SimpleDateFormat对象的副本,能够有效的避免多线程造成的线程安全问题,使用ThreadLocal解决线程安全问题的代码如下所示。

package io.binghe.concurrent.lab06;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过ThreadLocal解决SimpleDateFormat类的线程安全问题
 */
public class SimpleDateFormatTest05 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;

    private static ThreadLocal<DateFormat> threadLocal = new ThreadLocal<DateFormat>(){
        @Override
        protected DateFormat initialValue() {
            return new SimpleDateFormat("yyyy-MM-dd");
        }
    };

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        threadLocal.get().parse("2020-01-01");
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

通过代码可以得知,将每个线程使用的SimpleDateFormat副本保存在ThreadLocal中,各个线程在使用时互不干扰,从而解决了线程安全问题。

运行程序,输出结果如下所示。

所有线程格式化日期成功

此种方式运行效率比较高,推荐在高并发业务场景的生产环境使用。

另外,使用ThreadLocal也可以写成如下形式的代码,效果是一样的。

package io.binghe.concurrent.lab06;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过ThreadLocal解决SimpleDateFormat类的线程安全问题
 */
public class SimpleDateFormatTest06 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;

    private static ThreadLocal<DateFormat> threadLocal = new ThreadLocal<DateFormat>();

    private static DateFormat getDateFormat(){
        DateFormat dateFormat = threadLocal.get();
        if(dateFormat == null){
            dateFormat = new SimpleDateFormat("yyyy-MM-dd");
            threadLocal.set(dateFormat);
        }
        return dateFormat;
    }

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        getDateFormat().parse("2020-01-01");
                    } catch (ParseException e) {
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }catch (NumberFormatException e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

5.DateTimeFormatter方式

DateTimeFormatter是Java8提供的新的日期时间API中的类,DateTimeFormatter类是线程安全的,可以在高并发场景下直接使用DateTimeFormatter类来处理日期的格式化操作。代码如下所示。

package io.binghe.concurrent.lab06;

import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过DateTimeFormatter类解决线程安全问题
 */
public class SimpleDateFormatTest07 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;

   private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd");

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        LocalDate.parse("2020-01-01", formatter);
                    }catch (Exception e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

可以看到,DateTimeFormatter类是线程安全的,可以在高并发场景下直接使用DateTimeFormatter类来处理日期的格式化操作。

运行程序,输出结果如下所示。

所有线程格式化日期成功

使用DateTimeFormatter类来处理日期的格式化操作运行效率比较高,推荐在高并发业务场景的生产环境使用。

6.joda-time方式

joda-time是第三方处理日期时间格式化的类库,是线程安全的。如果使用joda-time来处理日期和时间的格式化,则需要引入第三方类库。这里,以Maven为例,如下所示引入joda-time库。

<dependency>
	<groupId>joda-time</groupId>
	<artifactId>joda-time</artifactId>
	<version>2.9.9</version>
</dependency>

引入joda-time库后,实现的程序代码如下所示。

package io.binghe.concurrent.lab06;

import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

/**
 * @author binghe
 * @version 1.0.0
 * @description 通过DateTimeFormatter类解决线程安全问题
 */
public class SimpleDateFormatTest08 {
    //执行总次数
    private static final int EXECUTE_COUNT = 1000;
    //同时运行的线程数量
    private static final int THREAD_COUNT = 20;

    private static DateTimeFormatter dateTimeFormatter = DateTimeFormat.forPattern("yyyy-MM-dd");

    public static void main(String[] args) throws InterruptedException {
        final Semaphore semaphore = new Semaphore(THREAD_COUNT);
        final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT);
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < EXECUTE_COUNT; i++){
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    try {
                        DateTime.parse("2020-01-01", dateTimeFormatter).toDate();
                    }catch (Exception e){
                        System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
                        e.printStackTrace();
                        System.exit(1);
                    }
                    semaphore.release();
                } catch (InterruptedException e) {
                    System.out.println("信号量发生错误");
                    e.printStackTrace();
                    System.exit(1);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println("所有线程格式化日期成功");
    }
}

这里,需要注意的是:DateTime类是org.joda.time包下的类,DateTimeFormat类和DateTimeFormatter类都是org.joda.time.format包下的类,如下所示。

import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;

运行程序,输出结果如下所示。

所有线程格式化日期成功

使用joda-time库来处理日期的格式化操作运行效率比较高,推荐在高并发业务场景的生产环境使用。

解决SimpleDateFormat类的线程安全问题的方案总结

综上所示:在解决解决SimpleDateFormat类的线程安全问题的几种方案中,局部变量法由于线程每次执行格式化时间时,都会创建SimpleDateFormat类的对象,这会导致创建大量的SimpleDateFormat对象,浪费运行空间和消耗服务器的性能,因为JVM创建和销毁对象是要耗费性能的。所以,不推荐在高并发要求的生产环境使用。

synchronized锁方式和Lock锁方式在处理问题的本质上是一致的,通过加锁的方式,使同一时刻只能有一个线程执行格式化日期和时间的操作。这种方式虽然减少了SimpleDateFormat对象的创建,但是由于同步锁的存在,导致性能下降,所以,不推荐在高并发要求的生产环境使用。

ThreadLocal通过保存各个线程的SimpleDateFormat类对象的副本,使每个线程在运行时,各自使用自身绑定的SimpleDateFormat对象,互不干扰,执行性能比较高,推荐在高并发的生产环境使用。

DateTimeFormatter是Java 8中提供的处理日期和时间的类,DateTimeFormatter类本身就是线程安全的,经压测,DateTimeFormatter类处理日期和时间的性能效果还不错(后文单独写一篇关于高并发下性能压测的文章)。所以,推荐在高并发场景下的生产环境使用。

joda-time是第三方处理日期和时间的类库,线程安全,性能经过高并发的考验,推荐在高并发场景下的生产环境使用。

好了,今天就到这儿吧,我是冰河,大家有啥问题可以在下方留言,也可以加我微信:sun_shine_lyz,我拉你进群,一起交流技术,一起进阶,一起牛逼~~

 



这篇关于更正SimpleDateFormat类线程不安全问题分析的错误的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程