遗传算法求解TSP问题(人工智能实验)
2021/6/21 17:27:23
本文主要是介绍遗传算法求解TSP问题(人工智能实验),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
遗传算法求解TSP问题
参考博客参考的代码和详解
根据老师的数据把其中一些代码修改了很小一部分:
```python import numpy as np import math import random # 適應度 def fitnessFunction(pop,num,city_num,distance): length=city_num for i in range(num): dis=0 for j in range(length-1): dis+=distance[int(pop[i][j])][int(pop[i][j+1])] dis+=distance[int(pop[i][j+1])][int(pop[i][0])] pop[i][-1]=20000/dis # 選擇 def choiceFuction(pop): numlist=[0] length=len(pop) allnum=0 for i in range(0,length): allnum+=pop[i][-1] numlist.append(allnum) temppop=[] #用于临时的种群数据 max = pop[np.argmax(pop[:, -1])] #最优的一个个体 for i in range(0,length): rannum=random.random()*numlist[-1] #0~1的小数乘上最大的数字,得到[0,max]上的一个点 ranIndex=InsertionSearch(numlist,rannum,0,length-1) #调用搜索函数 temppop.append(pop[ranIndex-1]) #将一个个的数据添加到 pop=np.array(temppop) #将pop索引指向临时数据,并且此处应该清理原来的pop空间才对 pop[0]=max.copy() #保证第一个元素就是最优的元素 return pop # 插值搜索 # 输入:列表,要搜索的值,最低索引,最高索引 # 输出:相等时的索引,或者接近该值左侧的索引 # 备注:Python里面的递归有次数限制(99次) def InsertionSearch(list,value,low,high): mid=low+int((value-list[low])/(list[high]-list[low])*(high-low)) if list[mid]==value: return mid if list[mid]>value: if list[mid-1]<value: return mid-1 else: return InsertionSearch(list,value,low,mid-1) if list[mid]<value: if list[mid+1]>value: return mid else: return InsertionSearch(list,value,mid+1,high) # 交叉变异(此处的交叉有两种情况) # 输入:种群,交叉概率,城市数量(列),变异概率,种群数量(行) # 输出:无输出,是一个过程(先交叉,再变异) # 备注:不同的交叉策略,相邻,随机,配对 def matuingFuction(pop, pc, city_num, pm, num): #产生两个不同的索引 rancon=True while rancon : p1=random.randint(1,city_num-1) p2=random.randint(0,city_num-2) if p1==p2: rancon=True elif p1<p2: rancon=False else: temp=p1 p1=p2 p2=temp pass # 交叉,變異(每一对交换,1 and 2, 3 and 4, and so on) # for i in range(1,num-1,2): # # for j in range(0,num-1): # # if i!=j: # # pc2=random.random() # # if(pc2<pc): # # matuting(pop[i],pop[j],p1,p2) # pc2=random.random() # if pc2<pc: # matuting(pop[i],pop[i+1],p1,p2) # # print("poobefore:",pop[i]) # variationFunction(pop[i],pm,city_num) # # print("pooend:",pop[i]) # variationFunction(pop[i+1],pm,city_num) # 交叉,變異(相邻两个进行交换) for i in range(1,num-1): pc2=random.random() if pc2<pc: matuting(pop[i],pop[i+1],p1,p2) variationFunction(pop[i],pm,city_num) # 交叉过程 # 输入:第一行数据x1,第二行数据x2,左侧断点,右侧断点 # 输出:惊醒过交叉的两行数据 # 备注:由于函数是单次检测,所以需要调用两次内部函数 def matuting(x1, x2, p1, p2): length=len(x1)-1 temp=x1[p1:p2].copy() x1[p1:p2]=x2[p1:p2] x2[p1:p2]=temp #自定義交換函數,需要調用兩次才能夠將其完全的排列好 def change(x1,x2,p1,p2): #检查元素 isrepeat=True while isrepeat: countTrue=0 for i in range(p1,p2): for j in range(0,p1): if int(x1[j])==int(x1[i]): isrepeat=True countTrue+=1 x1[j]=x2[i] for k in range(p2,length): if int(x1[k])==int(x1[i]): isrepeat=True countTrue+=1 x1[k]=x2[i] if countTrue==0: isrepeat=False #調用交換函數,兩次 change(x1,x2,p1,p2) change(x2,x1,p1,p2) # 变异过程 # 输入:一行数据,变异概率,城市数量 # 输出:行内交换元素的一行数据 # 备注:似乎数据交换不需要定义临时变量 def variationFunction(list_a, pm, city_num): if random.random()<pm: i=random.randint(0,city_num-1) isequal=True while isequal: j=random.randint(0,city_num-1) if(j==i): isequal=True else: isequal=False pass #交换两个数据 list_a[i],list_a[j]=list_a[j],list_a[i] # 主函数 def main(): # 初始化 pop = [] # 存放访问顺序和每个个体适应度@ num = 700 # 初始化群体的数目@ city_num = 5 # 城市数目@ pc = 0.9 # 每个个体的交配概率S@ pm = 0.3 # 每个个体的变异概率@ dis="0,3,1,5,8,3,0,6,7,9,1,6,0,4,2,5,7,4,0,3,8,9,2,3,0" # #获取输入的十个城市之间距离,并将它们转化为numpy的array,并重新reshape成10*10的二维数组distance@ # distance1 = input().split(",") distance1=dis.split(",") distance2 = np.array(distance1,dtype=np.int) distance = distance2.reshape((5, 5)) for i in range(num): pop.append(np.random.permutation(np.arange(0,city_num))) # 假设有10个城市,初始群体的数目500个@ zero = np.zeros((num,1)) # 返回给定形状和类型的新数组,用零填充。二维数组,num行2列@ pop = np.column_stack((pop, zero)) # 矩阵的拼接@ fitnessFunction(pop, num, city_num, distance) # 为初始种群赋予自适应度@ pop=choiceFuction(pop) # 遗传算法迭代,250为迭代次数,同学们可以对其进行调整@ for i in range(250): matuingFuction(pop,pc,city_num,pm,num) # 交叉變異 fitnessFunction(pop,num,city_num,distance) # 計算適應度 pop=choiceFuction(pop) # 選擇 #输出自适应度最大解个体并计算其路径长度@ max = pop[np.argmax(pop[:, -1])] sum = 0 for x2 in range(city_num - 1): sum += distance[int(max[x2])][int(max[x2 + 1])] sum += distance[int(max[4])][int(max[0])] print(sum) # 运行函数 if __name__=="__main__": main() # 值类型:int, float, bool, str, tuple # 引用类型:list, dict, set
这篇关于遗传算法求解TSP问题(人工智能实验)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-07SaaS工具的智能升级:AI Agent赋能的潜力与应用前景
- 2025-01-07SaaS+AI如何重新定义企业问题解决方式?
- 2025-01-04如何利用AI看板工具提升团队协作效率?10大深度评测与实用技巧
- 2025-01-03带有自反功能的自适应检索增强生成系统
- 2025-01-03FAISS向量数据库在生产LLM应用中的使用指南
- 2025-01-03掌握RAG:深入探讨文本分割技巧
- 2025-01-03深入探究结构化输出的应用技巧
- 2025-01-03因果推断的基本问题:现代视角下的统计挑战
- 2025-01-03预测的艺术:预AI时代的滤波技术讲解
- 2025-01-03OpenAI 新模型“草莓”来袭,o1-preview版本抢先看!