[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver
2021/6/30 17:21:19
本文主要是介绍[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Horovod 是Uber于2017年发布的一个易于使用的高性能的分布式训练框架,在业界得到了广泛应用。本系列将通过源码分析来带领大家了解 Horovod。本文是系列第四篇,看看如何获取 host 之间的路由等网络信息。 [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver目录
- [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver
- 0x00 摘要
- 0x01 引子
- 0x02 总体架构
- 2.1 get_local_interfaces
- 2.2 _driver_fn
- 2.3 获取路由接口
- 2.3.1 probe逻辑
- 2.3.2 等待函数
- 0x03 基础网络服务
- 3.1 继承关系
- 3.2 network.BasicService
- 3.2.1 创建Server
- 3.2.2 Server功能
- 3.3 network.BasicClient
- 3.3.1 _probe
- 3.3.2 发送消息
- 3.4 总结
- 0x04 Driver 服务
- 4.1 HorovodRunDriverService
- 4.2 BasicDriverService
- 4.2.1 _all_task_addresses
- 4.2.2 _task_addresses_for_driver
- 4.2.3 _task_addresses_for_tasks
- 4.2.4 _task_index_host_hash
- 4.2.5 _task_host_hash_indices
- 4.3 总体逻辑
- 0x05 Task 服务
- 5.1 启动具体服务
- 5.2 具体服务逻辑
- 5.3 HorovodRunTaskService
- 0x06 总结
- 0xEE 个人信息
- 0xFF 参考
0x00 摘要
Horovod 是Uber于2017年发布的一个易于使用的高性能的分布式训练框架,在业界得到了广泛应用。
本系列将通过源码分析来带领大家了解 Horovod。本文是系列第四篇,看看如何获取 host 之间的路由等网络信息。
前面几篇链接如下:
[源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入
[源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么
0x01 引子
在 horovod/runner/launch.py 文件中,_run_static 函数中使用 driver_service.get_common_interfaces 来获取路由信息等。
def _run_static(args): nics = driver_service.get_common_interfaces(settings, all_host_names, remote_host_names, fn_cache)
因为这部分比较复杂( Driver 的概念很类似 Spark 之中 Driver 的概念),所以本文我们单独来分析。
本文的分析问题点是:
- 为什么要知道路由信息?
- 当有多个host时候,horovod如何处理?
- 如何找到路由信息?
- 怎么互相交互?
- (后文会详细分析)SparkDriverService,SparkTaskService,ElasticDriver, Worker 都有什么区别和联系?
本文重点分析 HorovodRunDriverService 和 HorovodRunTaskService 相关。
先给出一个图例,大家可以有些概念。
0x02 总体架构
从注释可知,get_common_interfaces 完成了获得路由信息(所有host之间的共有路由接口集合)的功能,主要是调用 _driver_fn 来完成相关工作。
def get_common_interfaces(settings, all_host_names, remote_host_names=None, fn_cache=None): ''' Find the set of common and routed interfaces on all the hosts. ''' # 得到远端host地址 if remote_host_names is None: remote_host_names = network.filter_local_addresses(all_host_names) if len(remote_host_names) > 0: if settings.nics: # 如果参数有设定网络接口,就使用 # If args.nics is provided, we will use those interfaces. All the workers # must have at least one of those interfaces available. nics = settings.nics else: # Find the set of common, routed interfaces on all the hosts (remote # and local) and specify it in the args to be used by NCCL. It is # expected that the following function will find at least one interface # otherwise, it will raise an exception. local_host_names = set(all_host_names) - set(remote_host_names) # 获取其他host的网络接口 nics = _driver_fn(all_host_names, local_host_names, settings, fn_cache=fn_cache) else: nics = get_local_interfaces(settings) # 获取本地的网络接口 return nics
2.1 get_local_interfaces
此函数比较简单,目的是获取本地的网络接口。
def get_local_interfaces(settings): # If all the given hosts are local, find the interfaces with address # 127.0.0.1 nics = set() for iface, addrs in net_if_addrs().items(): if settings.nics and iface not in settings.nics: continue for addr in addrs: if addr.family == AF_INET and addr.address == '127.0.0.1': nics.add(iface) break return nics
2.2 _driver_fn
这是本文重点,获取其他host 的网络接口,_driver_fn 的作用是:
- 启动 service 服务;
- 使用 driver.addresses() 获取 Driver 服务的地址(使用self._addresses = self._get_local_addresses()完成);
- 使用 _launch_task_servers(利用 Driver 服务的地址)在每个 worker 之中启动 task 服务,然后 task 服务会在 service 服务中注册;
- 因为是一个环形,每个 worker 会探测 worker index + 1 的所有网络接口;
- 最后 _run_probe 返回一个所有 workers 上的所有路由接口的交集;
代码如下:
这里需要注意的一点是:@cache.use_cache() 的使用:当第一次使用过之后,会把结果放入缓存。
@cache.use_cache() def _driver_fn(all_host_names, local_host_names, settings): """ launches the service service, launches the task service on each worker and have them register with the service service. Each worker probes all the interfaces of the worker index + 1 (in a ring manner) and only keeps the routed interfaces. Function returns the intersection of the set of all the routed interfaces on all the workers. :param all_host_names: list of addresses. for example, ['worker-0','worker-1'] ['10.11.11.11', '10.11.11.12'] :type all_host_names: list(string) :param local_host_names: host names that resolve into a local addresses. :type local_host_names: set :param settings: the object that contains the setting for running horovod :type settings: horovod.runner.common.util.settings.Settings :return: example: ['eth0', 'eth1'] :rtype: list[string] """ # Launch a TCP server called service service on the host running horovod # 启动 service 服务 num_hosts = len(all_host_names) driver = HorovodRunDriverService(num_hosts, settings.key, settings.nics) # Have all the workers register themselves with the service service. #(利用 Driver 服务的地址)在每个worker之中启动 task 服务,然后task服务会在 service 服务中注册 _launch_task_servers(all_host_names, local_host_names, driver.addresses(), settings) try: # 返回一个所有 workers 上的所有路由接口的交集 return _run_probe(driver, settings, num_hosts) finally: driver.shutdown()
2.3 获取路由接口
我们对 _run_probe 函数做进一步分析。
2.3.1 probe逻辑
_run_probe 函数就是当 所有 task 都启动,注册,probe 环中下一个worker 邻居完成 之后,得到 接口集合。
- 利用 wait_for_initial_registration 等待所有 task 完成注册;
- 对于所有 task,完成 task.notify_initial_registration_complete 通知;
- 利用 driver.wait_for_task_to_task_address_updates 等待 每一个 worker probe 完成;
- 利用 nics.intersection_update 得到接口集合;
def _run_probe(driver, settings, num_hosts): # wait for all the hosts to register with the service service. driver.wait_for_initial_registration(settings.start_timeout) tasks = [ task_service.HorovodRunTaskClient( index, driver.task_addresses_for_driver(index), settings.key, settings.verbose) for index in range( num_hosts)] # Notify all the drivers that the initial registration is complete. for task in tasks: task.notify_initial_registration_complete() # Each worker should probe the interfaces of the next worker in a ring # manner and filter only the routed ones -- it should filter out # interfaces that are not really connected to any external networks # such as lo0 with address 127.0.0.1. driver.wait_for_task_to_task_address_updates(settings.start_timeout) # Determine a set of common interfaces for task-to-task communication. nics = set(driver.task_addresses_for_tasks(0).keys()) for index in range(1, num_hosts): nics.intersection_update( driver.task_addresses_for_tasks(index).keys()) return nics
2.3.2 等待函数
probe 利用 wait_for_initial_registration 等待所有 task 完成注册,具体等待函数如下:
def wait_for_initial_registration(self, timeout): self._wait_cond.acquire() try: while len(self._all_task_addresses) < self._num_proc: self._wait_cond.wait(timeout.remaining()) timeout.check_time_out_for('tasks to start') finally: self._wait_cond.release() def wait_for_task_to_task_address_updates(self, timeout): self._wait_cond.acquire() try: while len(self._task_addresses_for_tasks) < self._num_proc: self._wait_cond.wait(timeout.remaining()) timeout.check_time_out_for( 'tasks to update task-to-task addresses') finally: self._wait_cond.release()
0x03 基础网络服务
前面提到,Horovod Driver 的概念很类似 Spark 之中 Driver 的概念。Spark应用程序运行时主要分为 Driver 和 Executor,Driver负载总体调度及UI展示,Executor负责Task运行。用户的Spark应用程序运行在Driver上(某种程度上说,用户的程序就是Spark Driver程序),经过Spark调度封装成一个个Task,再将这些Task信息发给Executor执行,Task信息包括代码逻辑以及数据信息,Executor不直接运行用户的代码。
对于 Horovod 来说:
- HorovodRunDriverService 就是 Driver 的实现类。
- HorovodRunTaskService 提供了 Task 部分服务功能,这些 task 需要注册到 HorovodRunDriverService 之中。
- 这套 driver & task 机制的底层由 "基础网络服务" 支撑。
所以我们就仔细分析下基础网络服务。
3.1 继承关系
首先给出继承关系,我们下面讲解的 Driver 服务由 HorovodRunDriverService 提供,Task 服务由HorovodRunTaskService 提供。
这两个类最终都继承了 network.BasicService。
network.BasicService ^ ^ | | +-------------------+ +-------------+ | | + + driver_service.BasicDriverService task_service.BasicTaskService ^ ^ | | | | | | + + HorovodRunDriverService HorovodRunTaskService
3.2 network.BasicService
BasicService 提供了一个网络服务器功能。即通过find_port函数构建了一个ThreadingTCPServer,对外提供服务。
class BasicService(object): def __init__(self, service_name, key, nics): self._service_name = service_name self._wire = Wire(key) self._nics = nics self._server, _ = find_port( lambda addr: socketserver.ThreadingTCPServer( addr, self._make_handler())) self._server._block_on_close = True self._port = self._server.socket.getsockname()[1] self._addresses = self._get_local_addresses() self._thread = in_thread(target=self._server.serve_forever)
3.2.1 创建Server
创建服务器代码如下,这里是搜索一个随机端口,然后设置:
def find_port(server_factory): min_port = 1024 max_port = 65536 num_ports = max_port - min_port start_port = random.randrange(0, num_ports) for port_offset in range(num_ports): try: port = min_port + (start_port + port_offset) % num_ports addr = ('', port) server = server_factory(addr) return server, port except Exception as e: pass raise Exception('Unable to find a port to bind to.')
3.2.2 Server功能
服务器就是基本的功能,比如获取本server地址,处理 ping,网络交互等。
def _make_handler(self): server = self class _Handler(socketserver.StreamRequestHandler): def handle(self): try: req = server._wire.read(self.rfile) resp = server._handle(req, self.client_address) # A tuple is the usual response object followed by a utf8 text stream if type(resp) == tuple: (resp, stream) = resp server._wire.write(resp, self.wfile) server._wire.stream(stream, self.wfile) else: server._wire.write(resp, self.wfile) except (EOFError, BrokenPipeError): # Happens when client is abruptly terminated, don't want to pollute the logs. pass return _Handler def _handle(self, req, client_address): if isinstance(req, PingRequest): return PingResponse(self._service_name, client_address[0]) raise NotImplementedError(req) def _get_local_addresses(self): result = {} for intf, intf_addresses in psutil.net_if_addrs().items(): if self._nics and intf not in self._nics: continue for addr in intf_addresses: if addr.family == socket.AF_INET: if intf not in result: result[intf] = [] result[intf].append((addr.address, self._port)) return result def addresses(self): return self._addresses.copy() def shutdown(self): self._server.shutdown() self._server.server_close() self._thread.join() def get_port(self): return self._port
3.3 network.BasicClient
HorovodRunDriverClient 和 HorovodRunTaskClient 这两个类都继承了network.BasicClient。
network.BasicClient 的作用就是连接 network.BasicService,与其交互。即 network.BasicClient 是一个操作接口。
network.BasicClient ^ ^ | | +------------------+ +---------------+ | | + | + driver_service.BasicDriverClient task_service.BasicTaskClient ^ ^ | | | | + + HorovodRunDriverClient HorovodRunTaskClient
两个主要 API 如下:
3.3.1 _probe
_probe 获取 server 的网络接口。
def _probe(self, addresses): result_queue = queue.Queue() threads = [] for intf, intf_addresses in addresses.items(): for addr in intf_addresses: thread = in_thread(target=self._probe_one, args=(intf, addr, result_queue)) threads.append(thread) for t in threads: t.join() result = {} while not result_queue.empty(): intf, addr = result_queue.get() if intf not in result: result[intf] = [] result[intf].append(addr) return result
3.3.2 发送消息
_send 的作用是给server发送消息。
def _send(self, req, stream=None): """ Sends the request and returns the response object. Streaming data response is transferred to the optional stream parameter. """ # Since all the addresses were vetted, use the first one. addr = list(self._addresses.values())[0][0] return self._send_one(addr, req, stream)
3.4 总结
我们可以看到,network.BasicService 会提供了一个server,这个 Service 都是通过 network.BasicClient 来访问。基于此,Horovod 的HorovodRunDriverService 和 HorovodRunTaskService 这两个类就可以互相交互,进行沟通。
0x04 Driver 服务
Driver 服务由 HorovodRunDriverService 提供,其功能主要是维护维护各种 task 地址以及相应关系。具体各种 task 地址 就是 Task 服务 来注册的。
需要注意的是:HorovodRunDriverService 和 HorovodRunTaskService 都最终继承了 network.BasicService,他们之间可以是异地运行交互。
4.1 HorovodRunDriverService
HorovodRunDriverService 是对 BasicDriverService 的封装。
HorovodRunDriverClient 是 其 访问接口。
class HorovodRunDriverService(driver_service.BasicDriverService): NAME = 'horovod driver service' def __init__(self, num_hosts, key, nics): super(HorovodRunDriverService, self).__init__(num_hosts, HorovodRunDriverService.NAME, key, nics) class HorovodRunDriverClient(driver_service.BasicDriverClient): def __init__(self, driver_addresses, key, verbose, match_intf=False): super(HorovodRunDriverClient, self).__init__( HorovodRunDriverService.NAME, driver_addresses, key, verbose, match_intf=match_intf)
4.2 BasicDriverService
BasicDriverService基类 主要就是 维护各种 task 地址以及相应关系。
class BasicDriverService(network.BasicService): def __init__(self, num_proc, name, key, nics): super(BasicDriverService, self).__init__(name, key, nics) self._num_proc = num_proc self._all_task_addresses = {} self._task_addresses_for_driver = {} self._task_addresses_for_tasks = {} self._task_index_host_hash = {} self._task_host_hash_indices = {} self._wait_cond = threading.Condition()
这里的各种 task 地址就是 Task 服务 注册到 Driver 的数值。
可以看到里面有各种关于地址的变量,为了让大家理解这些变量的作用,对于每一个变量我们举例如下(这里有些变量是专门为 spark 设计,都放到基类里面有点奇怪):
4.2.1 _all_task_addresses
本变量是记录了所有 task 的地址,变量举例如下:
self._all_task_addresses = { 1: { 'lo' : [('1.1.1.1', 12345)], 'eth0' : [('10.10.10.01', 12345)] }, 0: { 'lo' : [('2.2.2.2', 54321)], 'eth0' : [('10.10.10.02', 54321)] } }
本变量由 task 调用 RegisterTaskRequest 来注册。
if isinstance(req, RegisterTaskRequest): self._wait_cond.acquire() try: assert 0 <= req.index < self._num_proc self._all_task_addresses[req.index] = req.task_addresses
使用时候,有几个方式,举例如下:
比如 all_task_addresses 获取 self._all_task_addresses[index].copy() 来决定 ping /check 的下一个跳转。
4.2.2 _task_addresses_for_driver
本变量是记录了所有 task 的地址,但是网卡接口有多种,这里选择与 本 driver 地址匹配的地址。
变量举例如下:
self._task_addresses_for_driver = { 1: { 'eth0' : [('10.10.10.01', 12345)] }, 0: { 'eth0' : [('10.10.10.02', 54321)] } }
本变量由 task 调用 RegisterTaskRequest 来注册。
# Just use source address for service for fast probing. self._task_addresses_for_driver[req.index] = \ self._filter_by_ip(req.task_addresses, client_address[0])
具体使用举例如下:
def task_addresses_for_driver(self, index): self._wait_cond.acquire() try: return self._task_addresses_for_driver[index].copy() finally: self._wait_cond.release()
driver用这个地址来生成 其内部 task 变量。
tasks = [ task_service.HorovodRunTaskClient( index, driver.task_addresses_for_driver(index), settings.key, settings.verbose) for index in range( num_hosts)]
4.2.3 _task_addresses_for_tasks
该变量举例如下:
self._task_addresses_for_tasks = { 1: { 'eth0' : [('10.10.10.01', 12345)] }, 0: { 'eth0' : [('10.10.10.02', 54321)] } }
本变量由RegisterTaskToTaskAddressesRequest注册。
if isinstance(req, RegisterTaskToTaskAddressesRequest): self.register_task_to_task_addresses(req.index, req.task_addresses) return network.AckResponse() def register_task_to_task_addresses(self, index, task_addresses): self._wait_cond.acquire() try: assert 0 <= index < self._num_proc self._task_addresses_for_tasks[index] = task_addresses # 这里赋值 finally: self._wait_cond.notify_all() self._wait_cond.release()
该变量被 task 用来获取 某个 task 的一套网络接口,比如:
# Determine a set of common interfaces for task-to-task communication. nics = set(driver.task_addresses_for_tasks(0).keys())
4.2.4 _task_index_host_hash
每一个 task 有一个对应的 host hash,该数值被 MPI 作为 host name 来操作。
self._task_index_host_hash = { 1: { 'ip-10-10-10-01-dfdsfdsfdsfdsf2' }, 0: { 'ip-10-10-10-02-treterwrtqwer' } }
具体使用如下。这个函数是 spark 相关会使用,具体是逐一通知 spark task 进入下一阶段。
def task_indices(self): self._wait_cond.acquire() try: return list(self._task_index_host_hash.keys()) finally: self._wait_cond.release()
或者使用如下,是为了获取某一个 host 对应的 host hash name。
def task_index_host_hash(self, index): self._wait_cond.acquire() try: assert 0 <= index < self._num_proc return self._task_index_host_hash[index] finally: self._wait_cond.release()
4.2.5 _task_host_hash_indices
该变量举例如下:
self._task_host_hash_indices = { { 'ip-10-10-10-01-dfdsfdsfdsfdsf2' : [1] }, { 'ip-10-10-10-02-treterwrtqwer' : [0] } }
具体是在注册 RegisterTaskRequest 时候生成。
self._task_host_hash_indices[req.host_hash].append(req.index)
使用具体代码是:
def task_host_hash_indices(self): self._wait_cond.acquire() try: return self._task_host_hash_indices.copy() finally: self._wait_cond.release()
具体是被 rsh 使用。rsh 就是在某一个 host 上,让某一个 horovod rank 启动。具体逻辑是:
- 获取某一个 host 上所有的 task indices ;
- 利用 task_host_hash_indices 取出本进程 local rank 对应的 task index;
- 取出在 driver 中 task index 对应保持的 task address;
- 最后依据这个 task addresses 生成一个 SparkTaskClient,进行后续操作。
driver_client = driver_service.SparkDriverClient(driver_addresses, key, verbose=verbose) task_indices = driver_client.task_host_hash_indices(host_hash) task_index = task_indices[local_rank] task_addresses = driver_client.all_task_addresses(task_index) task_client = task_service.SparkTaskClient(task_index, task_addresses, key, verbose=verbose) task_client.stream_command_output(stdout, stderr) task_client.run_command(command, env, capture_stdout=stdout is not None, capture_stderr=stderr is not None, prefix_output_with_timestamp=prefix_output_with_timestamp)
4.3 总体逻辑
总体逻辑如下:
network.BasicService ^ ^ | | +-------------------+ +-------------+ | | + + driver_service.BasicDriverService task_service.BasicTaskService ^ ^ | | | | | | | + +----------------+------------------+ HorovodRunTaskService | HorovodRunDriverService | | | | | | _all_task_addresses | | | | _task_addresses_for_driver | | | | _task_addresses_for_tasks | | | | _task_index_host_hash | | | | _task_host_hash_indices | | | +-----------------------------------+
0x05 Task 服务
HorovodRunTaskService 提供了 Task 部分服务功能。整体逻辑是由几个函数共同完成。
5.1 启动具体服务
_launch_task_servers 用来启动具体服务,其主要作用是:多线程运行,在每一个线程中,远程运行 horovod.runner.task_fn。
其中:
- 传入参数中,all_host_names 就是程序启动时候配置的所有host,比如 ["1.1.1.1", "2.2.2.2"];
- 使用了我们之前提到的 safe_shell_exec.execute 完成了安全运行保证;
- 使用我们前文提到的 get_remote_command 完成了远程命令的获取,即在命令之前加上了 ssh -o PasswordAuthentication=no -o StrictHostKeyChecking=no等等配置;
- 最终每个启动的命令举例如下: ssh -o PasswordAuthentication=no -o StrictHostKeyChecking=no 1.1.1.1 python -m horovod.runner.task_fn xxxxxxx;
- 使用 execute_function_multithreaded 在每一个 host 上运行,启动 task 服务;
具体代码如下:
def _launch_task_servers(all_host_names, local_host_names, driver_addresses, settings): """ Executes the task server and service client task for registration on the hosts. :param all_host_names: list of addresses. for example, ['worker-0','worker-1'] ['10.11.11.11', '10.11.11.12'] :type all_host_names: list(string) :param local_host_names: names that are resolved to one of the addresses of local hosts interfaces. For example, set(['localhost', '127.0.0.1']) :type local_host_names: set :param driver_addresses: map of interfaces and their address and port for the service. For example: { 'lo': [('127.0.0.1', 34588)], 'docker0': [('172.122.10.1', 34588)], 'eth0': [('11.111.33.73', 34588)] } :type driver_addresses: map :param settings: the object that contains the setting for running horovod :type settings: horovod.runner.common.util.settings.Settings :return: :rtype: """ def _exec_command(command): host_output = io.StringIO() try: # 完成了安全运行保证 exit_code = safe_shell_exec.execute(command, stdout=host_output, stderr=host_output) finally: host_output.close() return exit_code args_list = [] num_hosts = len(all_host_names) for index in range(num_hosts): host_name = all_host_names[index] # all_host_names 就是程序启动时候配置的所有host,比如 ["1.1.1.1", "2.2.2.2"] command = \ '{python} -m horovod.runner.task_fn {index} {num_hosts} ' \ '{driver_addresses} {settings}' \ .format(python=sys.executable, index=codec.dumps_base64(index), num_hosts=codec.dumps_base64(num_hosts), driver_addresses=codec.dumps_base64(driver_addresses), settings=codec.dumps_base64(settings)) if host_name not in local_host_names: # 完成了远程命令的获取,即在命令之前加上了 `ssh -o PasswordAuthentication=no -o StrictHostKeyChecking=no`等等配置 command = get_remote_command(command, host=host_name, port=settings.ssh_port, identity_file=settings.ssh_identity_file) args_list.append([command]) # Each thread will use ssh command to launch the server on one task. If an # error occurs in one thread, entire process will be terminated. Otherwise, # threads will keep running and ssh session -- and the the task server -- # will be bound to the thread. In case, the horovod process dies, all # the ssh sessions and all the task servers will die as well. # 使用 execute_function_multithreaded 在每一个 host 上运行,启动 task 服务 threads.execute_function_multithreaded(_exec_command, args_list, block_until_all_done=False)
5.2 具体服务逻辑
上段有:{python} -m horovod.runner.task_fn {index} {num_hosts} {driver_addresses} {settings}执行具体服务逻辑,所以我们介绍下 horovod.runner.task_fn。
_task_fn 函数完成了
- 生成了 HorovodRunTaskService 实例,赋值给 task;
- 使用 HorovodRunDriverClient . register_task 来向 Driver 服务注册task(自己)的地址;
- 使用 HorovodRunDriverClient . register_task_to_task_addresses 来向 Driver 服务注册自己在Ring上 下一个邻居的地址;
- 每一个 task 都做这个操作,最后就得到了在这个 ring cluster 之中的一个路由接口;
具体代码如下:
def _task_fn(index, num_hosts, driver_addresses, settings): task = task_service.HorovodRunTaskService(index, settings.key, settings.nics) try: driver = driver_service.HorovodRunDriverClient( driver_addresses, settings.key, settings.verbose) # 向 Driver 服务注册task(自己)的地址 driver.register_task(index, task.addresses(), host_hash.host_hash()) task.wait_for_initial_registration(settings.start_timeout) # Tasks ping each other in a circular fashion to determine interfaces # reachable within the cluster. next_task_index = (index + 1) % num_hosts next_task_addresses = driver.all_task_addresses(next_task_index) # We request interface matching to weed out all the NAT'ed interfaces. next_task = task_service.HorovodRunTaskClient( next_task_index, next_task_addresses, settings.key, settings.verbose, match_intf=True, attempts=10) # 向 Driver 服务注册自己在Ring上 下一个邻居的地址 driver.register_task_to_task_addresses(next_task_index, next_task.addresses()) # Notify the next task that the address checks are completed. next_task.task_to_task_address_check_completed() # Wait to get a notification from previous task that its address checks # are completed as well. task.wait_for_task_to_task_address_check_finish_signal(settings.start_timeout) finally: task.shutdown() if __name__ == '__main__': index = codec.loads_base64(sys.argv[1]) num_hosts = codec.loads_base64(sys.argv[2]) driver_addresses = codec.loads_base64(sys.argv[3]) settings = codec.loads_base64(sys.argv[4]) _task_fn(index, num_hosts, driver_addresses, settings)
5.3 HorovodRunTaskService
HorovodRunTaskService 主要的作用是提供了两个等待函数。因为具体路由操作是需要彼此通知,所以需要互相等待。
class HorovodRunTaskService(task_service.BasicTaskService): NAME_FORMAT = 'horovod task service #%d' def __init__(self, index, key, nics): super(HorovodRunTaskService, self).__init__( HorovodRunTaskService.NAME_FORMAT % index, index, key, nics) self.index = index self._task_to_task_address_check_completed = False def _handle(self, req, client_address): if isinstance(req, TaskToTaskAddressCheckFinishedSignal): self._wait_cond.acquire() try: self._task_to_task_address_check_completed = True finally: self._wait_cond.notify_all() self._wait_cond.release() return TaskToTaskAddressCheckFinishedSignalResponse(self.index) return super(HorovodRunTaskService, self)._handle(req, client_address) def wait_for_task_to_task_address_check_finish_signal(self, timeout): self._wait_cond.acquire() try: while not self._task_to_task_address_check_completed: self._wait_cond.wait(timeout.remaining()) timeout.check_time_out_for('Task to task address check') finally: self._wait_cond.release() class HorovodRunTaskClient(task_service.BasicTaskClient): def __init__(self, index, task_addresses, key, verbose, match_intf=False, attempts=3): super(HorovodRunTaskClient, self).__init__( HorovodRunTaskService.NAME_FORMAT % index, task_addresses, key, verbose, match_intf=match_intf, attempts=attempts) self.index = index def task_to_task_address_check_completed(self): resp = self._send(TaskToTaskAddressCheckFinishedSignal(self.index)) return resp.index
逻辑如下:
_driver_fn + | | +---------------------------------------+-------------------------------------v | | | v | _launch_task_servers v + driver = HorovodRunDriverService | + +--------------+-------------------+ | | | | | | v v v +-------------------+---------------+ horovod.runner.task_fn ...... horovod.runner.task_fn | HorovodRunDriverService | + + | | | | | | | | | _all_task_addresses | | | | | v v | _task_addresses_for_driver | register_task +-----------+---------------+ +-------+--------------------+ | | | HorovodRunTaskService | | HorovodRunTaskService | | _task_addresses_for_tasks | <--------------------------------+ | | | | | | | wait | | | _task_index_host_hash | | | <------> | | | | <--------------------------------+ | | | | _task_host_hash_indices | register_task_to_task_addresses | | | | | | +---------------------------+ +----------------------------+ +-----------------------------------+ `
手机如下:
0x06 总结
本文总结如下:
- 因为 Horovod 分布式训练 涉及到多个 hosts,所以如果要彼此访问,需要知道路由信息;
- 当所有 task 都启动,注册,probe 环中下一个worker 邻居完成 之后,DriverService 会得到路由信息(所有host之间的共有路由接口集合),返回给 Horovod 主体部分使用;
- network.BasicService 提供了网络服务功能;
- XXXService 都是通过 XXXClient作为接口才能访问;
- HorovodRunDriverService 和 HorovodRunTaskService 都最终继承了 network.BasicService,他们之间可以是异地运行交互。
- HorovodRunTaskService 提供了 Task 部分服务功能,这些 task 需要注册到 Driver 之中(和Spark思路类似)。
- HorovodRunDriverService 是对 BasicDriverService 的封装。BasicDriverService 就是 维护各种 task 地址以及相应关系,比如:
- _all_task_addresses :记录了所有 task 的地址;
- _task_addresses_for_driver :记录了所有 task 的地址,但是因为网卡接口有多种,这里选择与 本driver 地址匹配的地址;
- _task_addresses_for_tasks :用来给某一个 task 分配一个地址,同时获取本 task 的一套网络接口;
- _task_index_host_hash :每一个 task 有一个对应的 host hash。这个函数是 spark 相关会使用,具体是逐一通知 spark task 进入下一阶段。或者是为了获取某一个 host 对应的 host hash name;
- _task_host_hash_indices :具体是被 rsh 使用,由 rank 得到 在 driver 中 task index 对应保持的 task address;
- SparkDriverService,SparkTaskService,ElasticDriver, Worker 都有什么区别和联系?
- HorovodRunDriverService 这里只是用来得到路由信息,记录各种 Task 地址;
- SparkDriverService 除了记录路由和地址之外,还提交执行任务(Command),因为具体在哪一个Spark Executor启动之后,SparkDriverService 就需要知道 对应 SparkTaskService 的地址,这样才能知道提交到哪里;
- SparkTaskService 负责执行命令(抛弃了Spark Executor的逻辑,自己搞了一套),就是从 SparkDriverService 那里获得训练函数,然后启动 python 进程来执行;
- ElasticDriver 做得更多,因为还有弹性,需要容错;
0xFF 参考
[源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入
[源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么
这篇关于[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-25初学者必备:订单系统资料详解与实操教程
- 2024-12-24内网穿透资料入门教程
- 2024-12-24微服务资料入门指南
- 2024-12-24微信支付系统资料入门教程
- 2024-12-24微信支付资料详解:新手入门指南
- 2024-12-24Hbase资料:新手入门教程
- 2024-12-24Java部署资料
- 2024-12-24Java订单系统资料:新手入门教程
- 2024-12-24Java分布式资料入门教程
- 2024-12-24Java监控系统资料详解与入门教程