【坚持每日一题7.6】126. 单词接龙 II

2021/7/6 23:07:41

本文主要是介绍【坚持每日一题7.6】126. 单词接龙 II,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

按字典 wordList 完成从单词 beginWord 到单词 endWord 转化,一个表示此过程的 转换序列 是形式上像 beginWord -> s1 -> s2 -> … -> sk 这样的单词序列,并满足:

每对相邻的单词之间仅有单个字母不同。
转换过程中的每个单词 si(1 <= i <= k)必须是字典 wordList 中的单词。注意,beginWord 不必是字典 wordList 中的单词。
sk == endWord
给你两个单词 beginWord 和 endWord ,以及一个字典 wordList 。请你找出并返回所有从 beginWord 到 endWord 的 最短转换序列 ,如果不存在这样的转换序列,返回一个空列表。每个序列都应该以单词列表 [beginWord, s1, s2, …, sk] 的形式返回。

示例 1:

输入:beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]
输出:[[“hit”,“hot”,“dot”,“dog”,“cog”],[“hit”,“hot”,“lot”,“log”,“cog”]]
解释:存在 2 种最短的转换序列:
“hit” -> “hot” -> “dot” -> “dog” -> “cog”
“hit” -> “hot” -> “lot” -> “log” -> “cog”
示例 2:

输入:beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”]
输出:[]
解释:endWord “cog” 不在字典 wordList 中,所以不存在符合要求的转换序列。

提示:

1 <= beginWord.length <= 7
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord、endWord 和 wordList[i] 由小写英文字母组成
beginWord != endWord
wordList 中的所有单词 互不相同

java代码:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;

public class Solution {

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        List<List<String>> res = new ArrayList<>();
        // 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
        Set<String> dict = new HashSet<>(wordList);
        // 特殊用例判断
        if (!dict.contains(endWord)) {
            return res;
        }

        dict.remove(beginWord);

        // 第 1 步:广度优先遍历建图
        // 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先遍历的第几层
        Map<String, Integer> steps = new HashMap<>();
        steps.put(beginWord, 0);
        // 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
        Map<String, List<String>> from = new HashMap<>();
        int step = 1;
        boolean found = false;
        int wordLen = beginWord.length();
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                String currWord = queue.poll();
                char[] charArray = currWord.toCharArray();
                // 将每一位替换成 26 个小写英文字母
                for (int j = 0; j < wordLen; j++) {
                    char origin = charArray[j];
                    for (char c = 'a'; c <= 'z'; c++) {
                        charArray[j] = c;
                        String nextWord = String.valueOf(charArray);
                        if (steps.containsKey(nextWord) && step == steps.get(nextWord)) {
                            from.get(nextWord).add(currWord);
                        }
                        if (!dict.contains(nextWord)) {
                            continue;
                        }
                        // 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
                        dict.remove(nextWord);
                        // 这一层扩展出的单词进入队列
                        queue.offer(nextWord);

                        // 记录 nextWord 从 currWord 而来
                        from.putIfAbsent(nextWord, new ArrayList<>());
                        from.get(nextWord).add(currWord);
                        // 记录 nextWord 的 step
                        steps.put(nextWord, step);
                        if (nextWord.equals(endWord)) {
                            found = true;
                        }
                    }
                    charArray[j] = origin;
                }
            }
            step++;
            if (found) {
                break;
            }
        }

        // 第 2 步:深度优先遍历找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
        if (found) {
            Deque<String> path = new ArrayDeque<>();
            path.add(endWord);
            dfs(from, path, beginWord, endWord, res);
        }
        return res;
    }

    public void dfs(Map<String, List<String>> from, Deque<String> path, String beginWord, String cur, List<List<String>> res) {
        if (cur.equals(beginWord)) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (String precursor : from.get(cur)) {
            path.addFirst(precursor);
            dfs(from, path, beginWord, precursor, res);
            path.removeFirst();
        }
    }
}



这篇关于【坚持每日一题7.6】126. 单词接龙 II的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程