数据库领域的未来发展趋势是怎样的?
2021/7/8 2:07:36
本文主要是介绍数据库领域的未来发展趋势是怎样的?,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
写在前面
本文隶属于专栏《100个问题搞定大数据理论体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
本专栏目录结构和参考文献请见100个问题搞定大数据理论体系
解答
目前,数据库领域有几大核心发展趋势,云原生和分布式技术的融合,大数据与数据库一体化,包括HTAP以及离在线一体化;智能化技术深度融合,即自感知+自决策+自恢复+自优化;Multi-Model多模;软硬件一体化,充分发挥新硬件的优势;安全可信技术,即可验证日志、数据隐私保护与安全多方计算+全链路加密。
关于云原生请参考我的这篇博客——什么是云原生数据库?
在数据分析领域,企业亟需高效解决海量数据深度计算分析,下一代数据分析演进方向应该是“以云原生为基础,离在线一体化技术融合,实现数据库大数据一体化”。“数据库大数据一体化”的云原生数据分析系统能够很好的提供弹性扩展、海量存储、多种计算及低成本等能力,有效解决海量数据深度计算分析的业务分析和创新诉求。
“数据库大数据一体化”也是业界近年的发展趋势。Gartner “There is only one DBMS Market”报告指出,过去根据业务场景按照分析型和交易型需求,需要独立发展OPDBMS(事务处理)和DMSA(管理与分析),而未来分析型和交易型数据操作对技术架构依赖性会更小,将不再需要独立区分OPDBMS和DMSA,通过一体化的数据处理技术即可满足大多诉求。
从技术架构演进过程来看,2003至2006年,Google发布了关于Google File System、MapReduce和BigTable三篇海量数据存储、处理技术论文,奠定了今天大数据的整个技术生态圈的基石。2012年至今,随着云计算的发展,云计算的资源池化、存储与计算弹性扩展等基础设施升级,以及计算存储分离、在离线一体化等技术创新,促进了数据处理开始朝一份数据开放计算、存储计算分离的云原生方向演进,诞生了如Snowflake、AWS Redshift、AWS Aurora、AWS Athena为代表的新一代云原生数据库、数据仓库、数据湖,加速了数据处理向在线化、在离线一体化、结构化与非结构融合处理演进,加速业务走向数字化、数智化创新的新形态。
“数据库大数据一体化”的数据分析系统应具备几个特点:
云原生;
一份存储多种计算;
海量存储,支持结构化、半结构化及非结构化数据库的存储及计算;
全面兼容数据库生态。
这篇关于数据库领域的未来发展趋势是怎样的?的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南