锁屏面试题百日百刷-Redis篇(二)
2021/7/10 2:05:56
本文主要是介绍锁屏面试题百日百刷-Redis篇(二),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
锁屏面试题百日百刷,每个工作日坚持更新面试题。锁屏面试题app、小程序现已上线,官网地址:https://www.demosoftware.cc/#/introductionPage。已收录了每日更新的面试题的所有内容,还包含特色的解锁屏幕复习面试题、每日编程题目邮件推送等功能。让你在面试中先人一步,吊打面试官!接下来的是今日的面试题:
====Redis 的优缺点?
优点:
a) 性能极高 – Redis 能支持超过 100K+ 每秒的读写频率。
b) 丰富的数据类型 – Redis 支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
c) 原子 – Redis 的所有操作都是原子性的,同时 Redis 还支持对几个操作全并后的原子性执行。
d)丰富的特性 – Redis 还支持 publish/subscribe, 通知, key 过期等等特性。
缺点:
a)由于是内存数据库,所以,单台机器,存储的数据量,跟机器本身的内存大小有关。虽然 redis 本身有 key 过期策略,但是还是需要提前预估和节约内存。如果内存增长过快,需要定期删除数据。
b)如果进行完整重同步,由于需要生成 rdb 文件,并进行传输,会占用主机的 CPU,并会消耗现网的带宽。不过 redis2.8 版本,已经有部分重同步的功能,但是还是有可能有完整重同步的。比如,新上线的备机。
c)修改配置文件,进行重启,将硬盘中的数据加载进内存,时间比较久。在这个过程中,redis 不能提供服务。
====讲一讲Redis 的持久化?
RDB 持久化:该机制可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot)。
AOF 持久化:记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。AOF 文件中的命令全部以 Redis 协议的格式来保存,新命令会被追加到文件的末尾。 Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小
无持久化:让数据只在服务器运行时存在。
同时应用 AOF 和 RDB:当 Redis 重启时, 它会优先使用 AOF 文件来还原数据集, 因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。
====讲一讲RDB持久化和AOF持久化的优缺点?
RDB 的优缺点:
优点:RDB 是一个非常紧凑(compact)的文件,它保存了 Redis 在某个时间点上的数据集。 这种文件非常适合用于进行备份: 比如说,你可以在最近的 24 小时内,每小时备份一次 RDB 文件,并且在每个月的每一天,也备份一个 RDB 文件。 这样的话,即使遇上问题,也可以随时将数据集还原到不同的版本。RDB 非常适用于灾难恢复(disaster recovery):它只有一个文件,并且内容都非常紧凑,可以(在加密后)将它传送到别的数据中心,或者亚马逊 S3 中。RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
缺点:如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率,但是,因为 RDB 文件需要保存整个数据集的状态, 所以它并不是一个轻松的操作。 因此你可能会至少 5 分钟才保存一次 RDB 文件。 在这种情况下, 一旦发生故障停机,你就可能会丢失好几分钟的数据。每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。在数据集比较庞大时,fork() 可能会非常耗时,造成服务器在某某毫秒内停止
处理客户端;如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。
AOF 的优缺点。
优点:
1、使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。AOF 文件是一个只进行追加操作的日志文件(append only
log), 因此对 AOF 文件的写入不需要进行 seek , 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
2、Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
缺点:
对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。
====Redis 是单进程单线程的吗?
Redis 是单进程单线程的, redis 利用队列技术将并发访问变为串行访问, 消除了传统数据库串行控制的开销。
====Redis中一个字符串类型的值能存储最大容量是多少?
512M
====redis 过期键的删除策略?
1、定时删除:在设置键的过期时间的同时,创建一个定时器 timer). 让定时器在键的过期时间来临时,立即执行对键的删除操作。
2、惰性删除:放任键过期不管,但是每次从键空间中获取键时,都检查取得的键是 否过期, 如果过期的话, 就删除该键;如果没有过期, 就返回该键。
3、定期删除:每隔一段时间程序就对数据库进行一次检查,删除里面的过期键。至 于要删除多少过期键, 以及要检查多少个数据库, 则由算法决定。
====Redis有哪几种回收策略(淘汰策略)?
volatile-lru:从已设置过期时间的数据集( server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl: 从已设置过期时间的数据集( server.db[i].expires) 中挑选将要过期的数据淘汰
volatile-random: 从已设置过期时间的数据集( server.db[i].expires) 中任意选择数据淘汰
allkeys-lru: 从数据集( server.db[i].dict) 中挑选最近最少使用的数据淘汰
allkeys-random: 从数据集( server.db[i].dict) 中任意选择数据淘汰
no-enviction( 驱逐) : 禁止驱逐数据
注意这里的 6 种机制,volatile 和 allkeys 规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据, 后面的 lru、ttl 以及 random 是三种不同的淘汰策略, 再加上一种 no-enviction 永不回收的策略。
使用策略规则:
1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率 低, 则使用 allkeys-lru
2、如果数据呈现平等分布, 也就是所有的数据访问频率都相同, 则使用allkeys-random
====Redis 的同步机制了解么?
Redis 可以使用主从同步,从从同步。第一次同步时,主节点做一次 bgsave, 并同时将后续修改操作记录到内存 buffer, 待完成后将 rdb 文件全量同步到复制节点, 复制节点接受完成后将 rdb 镜像加载到内存。加载完成后, 再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
更多面试题可关注"demo锁屏面试题"公众号通过小程序或App获取面试题和学习资源
这篇关于锁屏面试题百日百刷-Redis篇(二)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-02Redis项目实战:新手入门教程
- 2024-10-22Redis入门教程:轻松掌握数据存储与操作
- 2024-10-22Redis缓存入门教程:快速掌握Redis缓存基础知识
- 2024-10-22Redis入门指南:轻松掌握Redis基础操作
- 2024-10-22Redis Quicklist 竟让内存占用狂降50%?
- 2024-10-17Redis学习:从入门到初级应用教程
- 2024-10-12Redis入门:新手必读教程
- 2024-09-26阿里云Redis项目实战:新手入门教程
- 2024-09-26阿里云Redis资料入门教程
- 2024-09-25阿里云Redis入门教程:快速掌握Redis的基本操作