【优化求解】混沌优化麻雀算法matlab源码
2021/7/14 20:06:13
本文主要是介绍【优化求解】混沌优化麻雀算法matlab源码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、麻雀算法
优化问题是科学研究和工程实践领域中的热门问题。智能优化算法大多是受到人类智能、生物群体社会性或自然现象规律的启发,在解空间内进行全局优化。麻雀算法于2020年由薛建凯[1]首次提出,是基于麻雀种群的觅食和反捕食行为的一种新型智能优化算法。
麻雀搜索算法的具体步骤描述以及公式介绍:
构建麻雀种群:
其中,d表示待优化问题的维数,n表示麻雀种群的数量。所有麻雀种群的适应度函数可以表示成如下形式:
其中,Fx表示适应度函数值。
麻雀算法中的麻雀具有两大类分别是发现者和加入者,发现者负责为整个种群寻找食物并为加入者提供觅食的方向,因此,发现者的觅食搜索范围要比加入者的觅食搜索范围大。在每次迭代过程中,发现者按照公式(3)进行迭代。
其中,t表示当前迭代次数,Xij表示第i个麻雀种群在第j维中的位置信息,阿尔法表示的0到1的随机数,itermax表示最大迭代次数,Q表示一个服从正态分布的随机数,L是一个1*d并且元素全为1的矩阵,R2属于0-1表示麻雀种群位置的预警值,ST属于0.5-1表示麻雀种群位置的安全值。
当R2<ST时表示 预警值小于安全值,此时觅食环境中没有捕食者,发现者可以进行广泛搜索操作;当R2>ST时意味着种群中有部分麻雀已经发现捕食者,并向种群中的其他麻雀发出预警,所有麻雀都需要飞往安全区域进行觅食。
在觅食过程中,部分加入者会时刻监视发现者,当发现者发现更好的食物,加入者会与其进行争夺,若成功,会立即获得该发现者的食物,否则加入者按照公式(4)进行位置更新。
其中,XP表示目前发现者所发现的最优位置,Xworst表示当前全局最差的位置,A表示其元素随机赋值为1或-1的1*d的矩阵并且满足一下关系:
L仍然是一个1*d并且元素全为1的矩阵。当i>n/2时这表明第i个加入者没有获得食物,处于饥饿状态,此时需要飞往其他地方进行觅食,以获得更多的能量。
在麻雀种群中,意识到危险的麻雀数量占总数的10%到20%,这些麻雀的位置是随机产生的,按照公式(5)对意识到危险的麻雀的位置进行不断更新。
其中,Xbest表示当前全局最优位置,是服从标准正态分布的随机数用来作为步长控制参数,贝塔是一个属于-1到1的随机数,fi表示当前麻雀个体的适应度值,fg表示全局最佳适应度值,fw表示全局最差适应度值,像左耳朵一样的这个是读"一不洗诺"吗?"一不洗诺"表示一个避免分母为0的常数。当fi>fg时表示此时麻雀处于种群边缘,极易受到捕食者的攻击,当fi=fg时表示处于种群中间的麻雀也受到了危险,此时需要靠近其他麻雀以减少被捕食的风险。
二、混沌麻雀算法
针对麻雀搜索算法(SSA)在接近全局最优时,种群多样性减少,易陷入局部最优解等问题,提出了一种混沌麻雀搜索优化算法(CSSA)。首先,通过改进 Tent 混沌序列初始化种群,提高初始解的质量,增强算法的全局搜索能力;其次,引入高斯变异的方法,加强局部搜索能力,提高搜索精度;同时以搜索停滞的解为基础产生 Tent 混沌序列,用此混沌序列对部分陷入局部最优的个体进行混沌扰动,促使算法跳出限制继续搜索。
三、部分代码
function [FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,fobj) if size(ub,1)==1 ub=ones(dim,1)*ub; lb=ones(dim,1)*lb; end Convergence_curve = zeros(1,Max_iter); %Initialize the positions of salps SalpPositions=initialization(N,dim,ub,lb); FoodPosition=zeros(1,dim); FoodFitness=inf; %calculate the fitness of initial salps for i=1:size(SalpPositions,1) SalpFitness(1,i)=fobj(SalpPositions(i,:)); end [sorted_salps_fitness,sorted_indexes]=sort(SalpFitness); for newindex=1:N Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:); end FoodPosition=Sorted_salps(1,:); FoodFitness=sorted_salps_fitness(1); %Main loop l=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salps while l<Max_iter+1 c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper for i=1:size(SalpPositions,1) SalpPositions= SalpPositions'; if i<=N/2 for j=1:1:dim c2=rand(); c3=rand(); %%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%% if c3<0.5 SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j)); else SalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end elseif i>N/2 && i<N+1 point1=SalpPositions(:,i-1); point2=SalpPositions(:,i); SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper end SalpPositions= SalpPositions'; end for i=1:size(SalpPositions,1) Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm; SalpFitness(1,i)=fobj(SalpPositions(i,:)); if SalpFitness(1,i)<FoodFitness FoodPosition=SalpPositions(i,:); FoodFitness=SalpFitness(1,i); end end Convergence_curve(l)=FoodFitness; l = l + 1; end
四、仿真结果
五、参考文献及代码私信博主
[1]吕鑫,慕晓冬,张钧,王震.混沌麻雀搜索优化算法[J/OL].北京航空航天大学学报:1-10[2020-11-16].https://doi.org/10.13700/j.bh.1001-5965.2020.0298. 复现matlab代码。
这篇关于【优化求解】混沌优化麻雀算法matlab源码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-08如何用关键链方法突破项目管理瓶颈?
- 2025-01-08电商人必看!6 款提升团队协作与客户满意度软件!
- 2025-01-08电商团队管理混乱?快用这 6 款软件优化协作流程!
- 2025-01-08短剧制作效率低?试试这5款任务管理工具
- 2025-01-08高效应对电商高峰,6 款团队协作软件大揭秘!
- 2025-01-08为什么外贸人都爱上了在线协作工具?
- 2025-01-08提升工作效率,从这些任务管理工具开始
- 2025-01-08新年电商订单暴增,必备的 6 款可视化协作办公软件有哪些?
- 2025-01-08短剧制作经理必备技能与工具全解析
- 2025-01-08在线协作让年货大促轻松应对!