Text to SQL 论文汇总(NL2SQL/TableQA)
2021/7/16 19:06:08
本文主要是介绍Text to SQL 论文汇总(NL2SQL/TableQA),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Seq2sql: Generating structured queries from natural language using reinforcement learning
会议:CoRR2017.
作者:Victor Zhong, Caiming Xiong, Richard Socher
链接:https://arxiv.org/abs/1709.00103
Abstract syntax networks for code generation and semantic parsing
会议:ACL2017
作者:Maxim Rabinovich, Mitchell Stern, Dan Klein.
链接:https://arxiv.org/abs/1704.07535
TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation
会议:NAACL 2018. Short Papers.
作者:Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, Dragomir Radev
链接:https://www.aclweb.org/anthology/N18-2093.pdf
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
会议:EMNLP 2018.
作者:Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, Dragomir Radev
链接:https://www.aclweb.org/anthology/D18-1425.pdf
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task
会议:EMNLP 2018.
作者:Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, Dragomir Radev
链接:https://www.aclweb.org/anthology/D18-1193.pdf
TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic Parsing and Code Generation
会议:EMNLP 2018.
作者:Pengcheng Yin, Graham Neubig
链接:https://aclanthology.org/D18-2002.pdf
SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning
会议:CoRR 2018
作者:Xiaojun Xu, Chang Liu, DawnSong.
链接:https://arxiv.org/pdf/1711.04436.pdf
Robust Text-to-SQL Generation with Execution-Guided Decoding
会议:CoRR2018
作者:Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Oleksandr Polozov, Rishabh Singh.
链接:https://arxiv.org/abs/1807.03100
Coarse-to-Fine Decoding for Neural Semantic Parsing
会议:ACL2018
作者:Li Dong, Mirella Lapata.
链接:https://arxiv.org/abs/1805.04793v1
Improving Text-to-SQL Evaluation Methodology
会议:ACL 2018. Long Papers.
作者:Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang, Dragomir Radev
链接:https://www.aclweb.org/anthology/P18-1033.pdf
Semantic Parsing with Syntax- and Table-Aware SQL Generation
会议:ACL2018
作者:Yibo Sun, Duyu Tang, Nan Duan, etc.
链接:https://aclanthology.org/P18-1034.pdf
Graph Enhanced Cross-Domain Text-to-SQL Generation
会议:EMNLP 2019. the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13).
作者:Siyu Huo, Tengfei Ma, Jie Chen, Maria Chang, Lingfei Wu, Michael Witbrock
链接:https://www.aclweb.org/anthology/D19-5319.pdf
Clause-Wise and Recursive Decoding for Complex and Cross-Domain Text-to-SQL Generation
会议:EMNLP 2019.
作者:Dongjun Lee
链接:https://www.aclweb.org/anthology/D19-1624.pdf
Model-based Interactive Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study
会议:EMNLP 2019.
作者:Ziyu Yao, Yu Su, Huan Sun, Wen-tau Yih
链接:https://www.aclweb.org/anthology/D19-1547.pdf
Data-Anonymous Encoding for Text-to-SQL Generation
会议:EMNLP 2019.
作者:Zhen Dong, Shizhao Sun, Hongzhi Liu, Jian-Guang Lou, Dongmei Zhang
链接:https://www.aclweb.org/anthology/D19-1543.pdf
Global Reasoning over Database Structures for Text-to-SQL Parsing
会议:EMNLP 2019.
作者:Ben Bogin, Matt Gardner, Jonathan Berant
链接:https://www.aclweb.org/anthology/D19-1378.pdf
Leveraging Adjective-Noun Phrasing Knowledge for Comparison Relation Prediction in Text-to-SQL
会议:EMNLP 2019.
作者:Haoyan Liu, Lei Fang, Qian Liu, Bei Chen, Jian-Guang Lou, Zhoujun Li
链接:https://www.aclweb.org/anthology/D19-1356.pdf
CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
会议:EMNLP 2019.
作者:Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter Lasecki, Dragomir Radev
链接:https://www.aclweb.org/anthology/D19-1204.pdf
SParC: Cross-Domain Semantic Parsing in Context
会议:ACL2019
作者:Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan
链接:https://arxiv.org/abs/1906.02285
X-SQL: reinforce schema representation with context
会议:CoRR2019
作者:Pengcheng He, Yi Mao, Kaushik Chakrabarti, Weizhu Chen.
链接:https://arxiv.org/abs/1908.08113
Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
会议:ACL 2019.
作者:Ben Bogin, Jonathan Berant, Matt Gardner
链接:https://www.aclweb.org/anthology/P19-1448.pdf
Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
会议:ACL 2019.
作者:Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, Dongmei Zhang
链接:https://www.aclweb.org/anthology/P19-1444.pdf
RECPARSER: A Recursive Semantic Parsing Framework for Text-to-SQL Task
会议:IJCAI 2020.
作者:Yu Zeng, Yan Gao, Jiaqi Guo, Bei Chen, Qian Liu, Jian-Guang Lou, Fei Teng, Dongmei Zhang
链接:https://www.ijcai.org/proceedings/2020/0504.pdf
Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing
会议:EMNLP 2020. Findings Short Paper.
作者:Xi Victoria Lin, Richard Socher, Caiming Xiong
链接:https://www.aclweb.org/anthology/2020.findings-emnlp.438.pdf
A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese
会议:EMNLP 2020. Findings Short Paper.
作者:Anh Tuan Nguyen, Mai Hoang Dao, Dat Quoc Nguyen
链接:https://www.aclweb.org/anthology/2020.findings-emnlp.364.pdf
Service-oriented Text-to-SQL Parsing
会议:EMNLP 2020. Findings Short Paper.
作者:Wangsu Hu, Jilei Tian
链接:https://www.aclweb.org/anthology/2020.findings-emnlp.201.pdf
Re-examining the Role of Schema Linking in Text-to-SQL
会议:EMNLP 2020. Long Paper.
作者:Wenqiang Lei, Weixin Wang, Zhixin MA, Tian Gan, Wei Lu, Min-Yen Kan, Tat-Seng Chua
链接:https://www.aclweb.org/anthology/2020.emnlp-main.564.pdf
Semantic Evaluation for Text-to-SQL with Distilled Test Suite
会议:EMNLP 2020. Long Paper.
作者:Ruiqi Zhong, Tao Yu, Dan Klein
链接:https://www.aclweb.org/anthology/2020.emnlp-main.29.pdf
“What Do You Mean by That?” - a Parser-Independent Interactive Approach for Enhancing Text-to-SQL
会议:EMNLP 2020. Long Paper.
作者:Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang LOU, Yan Zhang, Dongmei Zhang
链接:https://www.aclweb.org/anthology/2020.emnlp-main.561.pdf
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
会议:EMNLP 2020. Long Paper.
作者:Yitao Cai, Xiaojun Wan
链接:https://www.aclweb.org/anthology/2020.emnlp-main.560.pdf
ChiTeSQL: A Large-Scale and Pragmatic Chinese Text-to-SQL Dataset
会议:EMNLP 2020. Long Paper.
作者:Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua Li, Hua Wu, Min Zhang, Haifeng Wang
链接:https://www.aclweb.org/anthology/2020.emnlp-main.562.pdf
Photon: A Robust Cross-Domain Text-to-SQL System
会议:ACL 2020. System Demonstrations.
作者:Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard Socher, Caiming Xiong, Michael Lyu, Irwin King
链接:https://www.aclweb.org/anthology/2020.acl-demos.24.pdf
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
会议:ACL 2020.
作者:Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, Matthew Richardson
链接:https://www.aclweb.org/anthology/2020.acl-main.677.pdf
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback
会议:ACL 2020.
作者:Ahmed Elgohary, saghar Hosseini, Ahmed Hassan Awadallah
链接:https://www.aclweb.org/anthology/2020.acl-main.187.pdf
Zero-Shot Text-to-SQL Learning with Auxiliary Task
会议:AAAI 2020. AAAI Technical Track: Natural Language Processing.
作者:Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang, Xiaodong He, Bowen Zhou
链接:https://aaai.org/ojs/index.php/AAAI/article/view/6246/6102
这篇关于Text to SQL 论文汇总(NL2SQL/TableQA)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-11有哪些好用的家政团队管理工具?
- 2025-01-11营销人必看的GTM五个指标
- 2025-01-11办公软件在直播电商前期筹划中的应用与推荐
- 2025-01-11提升组织效率:上级管理者如何优化跨部门任务分配
- 2025-01-11酒店精细化运营背后的协同工具支持
- 2025-01-11跨境电商选品全攻略:工具使用、市场数据与选品策略
- 2025-01-11数据驱动酒店管理:在线工具的核心价值解析
- 2025-01-11cursor试用出现:Too many free trial accounts used on this machine 的解决方法
- 2025-01-11百万架构师第十四课:源码分析:Spring 源码分析:深入分析IOC那些鲜为人知的细节|JavaGuide
- 2025-01-11不得不了解的高效AI办公工具API