使用sklearn进行量纲缩放的程序
2021/7/20 20:09:46
本文主要是介绍使用sklearn进行量纲缩放的程序,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
使用sklearn进行量纲缩放的程序
# -*- coding: utf-8 -*- """ 演示内容:量纲的特征缩放 (两种方法:标准化缩放法和区间缩放法。每种方法举了两个例子:简单二维矩阵和iris数据集) """ #方法1:标准化缩放法 例1:对简单示例二维矩阵的列数据进行 from sklearn import preprocessing import numpy as np #采用numpy的array表示,因为要用到其mean等函数,而list没有这些函数 X = np.array([[0, 0], [0, 0], [100, 1], [1, 1]]) # calculate mean X_mean = X.mean(axis=0) # calculate variance X_std = X.std(axis=0) #print (X_std) # standardize X X1 = (X-X_mean)/X_std print (X1) print ("") # we can also use function preprocessing.scale to standardize X X_scale = preprocessing.scale(X) print (X_scale)
[[-0.58504784 -1. ] [-0.58504784 -1. ] [ 1.73197332 1. ] [-0.56187763 1. ]] [[-0.58504784 -1. ] [-0.58504784 -1. ] [ 1.73197332 1. ] [-0.56187763 1. ]]
#方法1: 标准化缩放法 例2:对iris数据二维矩阵的列数据进行。这次采用一个集成的方法StandardScaler from sklearn import datasets iris = datasets.load_iris() X_scale = preprocessing.scale(iris.data) print (X_scale)
[[-9.00681170e-01 1.01900435e+00 -1.34022653e+00 -1.31544430e+00] [-1.14301691e+00 -1.31979479e-01 -1.34022653e+00 -1.31544430e+00] [-1.38535265e+00 3.28414053e-01 -1.39706395e+00 -1.31544430e+00] [-1.50652052e+00 9.82172869e-02 -1.28338910e+00 -1.31544430e+00] [-1.02184904e+00 1.24920112e+00 -1.34022653e+00 -1.31544430e+00] [-5.37177559e-01 1.93979142e+00 -1.16971425e+00 -1.05217993e+00] [-1.50652052e+00 7.88807586e-01 -1.34022653e+00 -1.18381211e+00] [-1.02184904e+00 7.88807586e-01 -1.28338910e+00 -1.31544430e+00] [-1.74885626e+00 -3.62176246e-01 -1.34022653e+00 -1.31544430e+00] [-1.14301691e+00 9.82172869e-02 -1.28338910e+00 -1.44707648e+00] [-5.37177559e-01 1.47939788e+00 -1.28338910e+00 -1.31544430e+00] [-1.26418478e+00 7.88807586e-01 -1.22655167e+00 -1.31544430e+00] [-1.26418478e+00 -1.31979479e-01 -1.34022653e+00 -1.44707648e+00] [-1.87002413e+00 -1.31979479e-01 -1.51073881e+00 -1.44707648e+00] [-5.25060772e-02 2.16998818e+00 -1.45390138e+00 -1.31544430e+00] [-1.73673948e-01 3.09077525e+00 -1.28338910e+00 -1.05217993e+00] [-5.37177559e-01 1.93979142e+00 -1.39706395e+00 -1.05217993e+00] [-9.00681170e-01 1.01900435e+00 -1.34022653e+00 -1.18381211e+00] [-1.73673948e-01 1.70959465e+00 -1.16971425e+00 -1.18381211e+00] [-9.00681170e-01 1.70959465e+00 -1.28338910e+00 -1.18381211e+00] [-5.37177559e-01 7.88807586e-01 -1.16971425e+00 -1.31544430e+00] [-9.00681170e-01 1.47939788e+00 -1.28338910e+00 -1.05217993e+00] [-1.50652052e+00 1.24920112e+00 -1.56757623e+00 -1.31544430e+00] [-9.00681170e-01 5.58610819e-01 -1.16971425e+00 -9.20547742e-01] [-1.26418478e+00 7.88807586e-01 -1.05603939e+00 -1.31544430e+00] [-1.02184904e+00 -1.31979479e-01 -1.22655167e+00 -1.31544430e+00] [-1.02184904e+00 7.88807586e-01 -1.22655167e+00 -1.05217993e+00] [-7.79513300e-01 1.01900435e+00 -1.28338910e+00 -1.31544430e+00] [-7.79513300e-01 7.88807586e-01 -1.34022653e+00 -1.31544430e+00] [-1.38535265e+00 3.28414053e-01 -1.22655167e+00 -1.31544430e+00] [-1.26418478e+00 9.82172869e-02 -1.22655167e+00 -1.31544430e+00] [-5.37177559e-01 7.88807586e-01 -1.28338910e+00 -1.05217993e+00] [-7.79513300e-01 2.40018495e+00 -1.28338910e+00 -1.44707648e+00] [-4.16009689e-01 2.63038172e+00 -1.34022653e+00 -1.31544430e+00] [-1.14301691e+00 9.82172869e-02 -1.28338910e+00 -1.31544430e+00] [-1.02184904e+00 3.28414053e-01 -1.45390138e+00 -1.31544430e+00] [-4.16009689e-01 1.01900435e+00 -1.39706395e+00 -1.31544430e+00] [-1.14301691e+00 1.24920112e+00 -1.34022653e+00 -1.44707648e+00] [-1.74885626e+00 -1.31979479e-01 -1.39706395e+00 -1.31544430e+00] [-9.00681170e-01 7.88807586e-01 -1.28338910e+00 -1.31544430e+00] [-1.02184904e+00 1.01900435e+00 -1.39706395e+00 -1.18381211e+00] [-1.62768839e+00 -1.74335684e+00 -1.39706395e+00 -1.18381211e+00] [-1.74885626e+00 3.28414053e-01 -1.39706395e+00 -1.31544430e+00] [-1.02184904e+00 1.01900435e+00 -1.22655167e+00 -7.88915558e-01] [-9.00681170e-01 1.70959465e+00 -1.05603939e+00 -1.05217993e+00] [-1.26418478e+00 -1.31979479e-01 -1.34022653e+00 -1.18381211e+00] [-9.00681170e-01 1.70959465e+00 -1.22655167e+00 -1.31544430e+00] [-1.50652052e+00 3.28414053e-01 -1.34022653e+00 -1.31544430e+00] [-6.58345429e-01 1.47939788e+00 -1.28338910e+00 -1.31544430e+00] [-1.02184904e+00 5.58610819e-01 -1.34022653e+00 -1.31544430e+00] [ 1.40150837e+00 3.28414053e-01 5.35408562e-01 2.64141916e-01] [ 6.74501145e-01 3.28414053e-01 4.21733708e-01 3.95774101e-01] [ 1.28034050e+00 9.82172869e-02 6.49083415e-01 3.95774101e-01] [-4.16009689e-01 -1.74335684e+00 1.37546573e-01 1.32509732e-01] [ 7.95669016e-01 -5.92373012e-01 4.78571135e-01 3.95774101e-01] [-1.73673948e-01 -5.92373012e-01 4.21733708e-01 1.32509732e-01] [ 5.53333275e-01 5.58610819e-01 5.35408562e-01 5.27406285e-01] [-1.14301691e+00 -1.51316008e+00 -2.60315415e-01 -2.62386821e-01] [ 9.16836886e-01 -3.62176246e-01 4.78571135e-01 1.32509732e-01] [-7.79513300e-01 -8.22569778e-01 8.07091462e-02 2.64141916e-01] [-1.02184904e+00 -2.43394714e+00 -1.46640561e-01 -2.62386821e-01] [ 6.86617933e-02 -1.31979479e-01 2.51221427e-01 3.95774101e-01] [ 1.89829664e-01 -1.97355361e+00 1.37546573e-01 -2.62386821e-01] [ 3.10997534e-01 -3.62176246e-01 5.35408562e-01 2.64141916e-01] [-2.94841818e-01 -3.62176246e-01 -8.98031345e-02 1.32509732e-01] [ 1.03800476e+00 9.82172869e-02 3.64896281e-01 2.64141916e-01] [-2.94841818e-01 -1.31979479e-01 4.21733708e-01 3.95774101e-01] [-5.25060772e-02 -8.22569778e-01 1.94384000e-01 -2.62386821e-01] [ 4.32165405e-01 -1.97355361e+00 4.21733708e-01 3.95774101e-01] [-2.94841818e-01 -1.28296331e+00 8.07091462e-02 -1.30754636e-01] [ 6.86617933e-02 3.28414053e-01 5.92245988e-01 7.90670654e-01] [ 3.10997534e-01 -5.92373012e-01 1.37546573e-01 1.32509732e-01] [ 5.53333275e-01 -1.28296331e+00 6.49083415e-01 3.95774101e-01] [ 3.10997534e-01 -5.92373012e-01 5.35408562e-01 8.77547895e-04] [ 6.74501145e-01 -3.62176246e-01 3.08058854e-01 1.32509732e-01] [ 9.16836886e-01 -1.31979479e-01 3.64896281e-01 2.64141916e-01] [ 1.15917263e+00 -5.92373012e-01 5.92245988e-01 2.64141916e-01] [ 1.03800476e+00 -1.31979479e-01 7.05920842e-01 6.59038469e-01] [ 1.89829664e-01 -3.62176246e-01 4.21733708e-01 3.95774101e-01] [-1.73673948e-01 -1.05276654e+00 -1.46640561e-01 -2.62386821e-01] [-4.16009689e-01 -1.51316008e+00 2.38717193e-02 -1.30754636e-01] [-4.16009689e-01 -1.51316008e+00 -3.29657076e-02 -2.62386821e-01] [-5.25060772e-02 -8.22569778e-01 8.07091462e-02 8.77547895e-04] [ 1.89829664e-01 -8.22569778e-01 7.62758269e-01 5.27406285e-01] [-5.37177559e-01 -1.31979479e-01 4.21733708e-01 3.95774101e-01] [ 1.89829664e-01 7.88807586e-01 4.21733708e-01 5.27406285e-01] [ 1.03800476e+00 9.82172869e-02 5.35408562e-01 3.95774101e-01] [ 5.53333275e-01 -1.74335684e+00 3.64896281e-01 1.32509732e-01] [-2.94841818e-01 -1.31979479e-01 1.94384000e-01 1.32509732e-01] [-4.16009689e-01 -1.28296331e+00 1.37546573e-01 1.32509732e-01] [-4.16009689e-01 -1.05276654e+00 3.64896281e-01 8.77547895e-04] [ 3.10997534e-01 -1.31979479e-01 4.78571135e-01 2.64141916e-01] [-5.25060772e-02 -1.05276654e+00 1.37546573e-01 8.77547895e-04] [-1.02184904e+00 -1.74335684e+00 -2.60315415e-01 -2.62386821e-01] [-2.94841818e-01 -8.22569778e-01 2.51221427e-01 1.32509732e-01] [-1.73673948e-01 -1.31979479e-01 2.51221427e-01 8.77547895e-04] [-1.73673948e-01 -3.62176246e-01 2.51221427e-01 1.32509732e-01] [ 4.32165405e-01 -3.62176246e-01 3.08058854e-01 1.32509732e-01] [-9.00681170e-01 -1.28296331e+00 -4.30827696e-01 -1.30754636e-01] [-1.73673948e-01 -5.92373012e-01 1.94384000e-01 1.32509732e-01] [ 5.53333275e-01 5.58610819e-01 1.27429511e+00 1.71209594e+00] [-5.25060772e-02 -8.22569778e-01 7.62758269e-01 9.22302838e-01] [ 1.52267624e+00 -1.31979479e-01 1.21745768e+00 1.18556721e+00] [ 5.53333275e-01 -3.62176246e-01 1.04694540e+00 7.90670654e-01] [ 7.95669016e-01 -1.31979479e-01 1.16062026e+00 1.31719939e+00] [ 2.12851559e+00 -1.31979479e-01 1.61531967e+00 1.18556721e+00] [-1.14301691e+00 -1.28296331e+00 4.21733708e-01 6.59038469e-01] [ 1.76501198e+00 -3.62176246e-01 1.44480739e+00 7.90670654e-01] [ 1.03800476e+00 -1.28296331e+00 1.16062026e+00 7.90670654e-01] [ 1.64384411e+00 1.24920112e+00 1.33113254e+00 1.71209594e+00] [ 7.95669016e-01 3.28414053e-01 7.62758269e-01 1.05393502e+00] [ 6.74501145e-01 -8.22569778e-01 8.76433123e-01 9.22302838e-01] [ 1.15917263e+00 -1.31979479e-01 9.90107977e-01 1.18556721e+00] [-1.73673948e-01 -1.28296331e+00 7.05920842e-01 1.05393502e+00] [-5.25060772e-02 -5.92373012e-01 7.62758269e-01 1.58046376e+00] [ 6.74501145e-01 3.28414053e-01 8.76433123e-01 1.44883158e+00] [ 7.95669016e-01 -1.31979479e-01 9.90107977e-01 7.90670654e-01] [ 2.24968346e+00 1.70959465e+00 1.67215710e+00 1.31719939e+00] [ 2.24968346e+00 -1.05276654e+00 1.78583195e+00 1.44883158e+00] [ 1.89829664e-01 -1.97355361e+00 7.05920842e-01 3.95774101e-01] [ 1.28034050e+00 3.28414053e-01 1.10378283e+00 1.44883158e+00] [-2.94841818e-01 -5.92373012e-01 6.49083415e-01 1.05393502e+00] [ 2.24968346e+00 -5.92373012e-01 1.67215710e+00 1.05393502e+00] [ 5.53333275e-01 -8.22569778e-01 6.49083415e-01 7.90670654e-01] [ 1.03800476e+00 5.58610819e-01 1.10378283e+00 1.18556721e+00] [ 1.64384411e+00 3.28414053e-01 1.27429511e+00 7.90670654e-01] [ 4.32165405e-01 -5.92373012e-01 5.92245988e-01 7.90670654e-01] [ 3.10997534e-01 -1.31979479e-01 6.49083415e-01 7.90670654e-01] [ 6.74501145e-01 -5.92373012e-01 1.04694540e+00 1.18556721e+00] [ 1.64384411e+00 -1.31979479e-01 1.16062026e+00 5.27406285e-01] [ 1.88617985e+00 -5.92373012e-01 1.33113254e+00 9.22302838e-01] [ 2.49201920e+00 1.70959465e+00 1.50164482e+00 1.05393502e+00] [ 6.74501145e-01 -5.92373012e-01 1.04694540e+00 1.31719939e+00] [ 5.53333275e-01 -5.92373012e-01 7.62758269e-01 3.95774101e-01] [ 3.10997534e-01 -1.05276654e+00 1.04694540e+00 2.64141916e-01] [ 2.24968346e+00 -1.31979479e-01 1.33113254e+00 1.44883158e+00] [ 5.53333275e-01 7.88807586e-01 1.04694540e+00 1.58046376e+00] [ 6.74501145e-01 9.82172869e-02 9.90107977e-01 7.90670654e-01] [ 1.89829664e-01 -1.31979479e-01 5.92245988e-01 7.90670654e-01] [ 1.28034050e+00 9.82172869e-02 9.33270550e-01 1.18556721e+00] [ 1.03800476e+00 9.82172869e-02 1.04694540e+00 1.58046376e+00] [ 1.28034050e+00 9.82172869e-02 7.62758269e-01 1.44883158e+00] [-5.25060772e-02 -8.22569778e-01 7.62758269e-01 9.22302838e-01] [ 1.15917263e+00 3.28414053e-01 1.21745768e+00 1.44883158e+00] [ 1.03800476e+00 5.58610819e-01 1.10378283e+00 1.71209594e+00] [ 1.03800476e+00 -1.31979479e-01 8.19595696e-01 1.44883158e+00] [ 5.53333275e-01 -1.28296331e+00 7.05920842e-01 9.22302838e-01] [ 7.95669016e-01 -1.31979479e-01 8.19595696e-01 1.05393502e+00] [ 4.32165405e-01 7.88807586e-01 9.33270550e-01 1.44883158e+00] [ 6.86617933e-02 -1.31979479e-01 7.62758269e-01 7.90670654e-01]]
#方法2: 区间缩放法 例3:对简单示例二维矩阵的列数据进行 from sklearn.preprocessing import MinMaxScaler data = [[0, 0], [0, 0], [100, 1], [1, 1]] scaler = MinMaxScaler() print(scaler.fit(data)) print(scaler.transform(data))
MinMaxScaler(copy=True, feature_range=(0, 1)) [[0. 0. ] [0. 0. ] [1. 1. ] [0.01 1. ]]
#方法2: 区间缩放法 例4:对iris数据二维矩阵的列数据进行 from sklearn.preprocessing import MinMaxScaler data = iris.data scaler = MinMaxScaler() print(scaler.fit(data)) print(scaler.transform(data))
MinMaxScaler(copy=True, feature_range=(0, 1)) [[0.22222222 0.625 0.06779661 0.04166667] [0.16666667 0.41666667 0.06779661 0.04166667] [0.11111111 0.5 0.05084746 0.04166667] [0.08333333 0.45833333 0.08474576 0.04166667] [0.19444444 0.66666667 0.06779661 0.04166667] [0.30555556 0.79166667 0.11864407 0.125 ] [0.08333333 0.58333333 0.06779661 0.08333333] [0.19444444 0.58333333 0.08474576 0.04166667] [0.02777778 0.375 0.06779661 0.04166667] [0.16666667 0.45833333 0.08474576 0. ] [0.30555556 0.70833333 0.08474576 0.04166667] [0.13888889 0.58333333 0.10169492 0.04166667] [0.13888889 0.41666667 0.06779661 0. ] [0. 0.41666667 0.01694915 0. ] [0.41666667 0.83333333 0.03389831 0.04166667] [0.38888889 1. 0.08474576 0.125 ] [0.30555556 0.79166667 0.05084746 0.125 ] [0.22222222 0.625 0.06779661 0.08333333] [0.38888889 0.75 0.11864407 0.08333333] [0.22222222 0.75 0.08474576 0.08333333] [0.30555556 0.58333333 0.11864407 0.04166667] [0.22222222 0.70833333 0.08474576 0.125 ] [0.08333333 0.66666667 0. 0.04166667] [0.22222222 0.54166667 0.11864407 0.16666667] [0.13888889 0.58333333 0.15254237 0.04166667] [0.19444444 0.41666667 0.10169492 0.04166667] [0.19444444 0.58333333 0.10169492 0.125 ] [0.25 0.625 0.08474576 0.04166667] [0.25 0.58333333 0.06779661 0.04166667] [0.11111111 0.5 0.10169492 0.04166667] [0.13888889 0.45833333 0.10169492 0.04166667] [0.30555556 0.58333333 0.08474576 0.125 ] [0.25 0.875 0.08474576 0. ] [0.33333333 0.91666667 0.06779661 0.04166667] [0.16666667 0.45833333 0.08474576 0.04166667] [0.19444444 0.5 0.03389831 0.04166667] [0.33333333 0.625 0.05084746 0.04166667] [0.16666667 0.66666667 0.06779661 0. ] [0.02777778 0.41666667 0.05084746 0.04166667] [0.22222222 0.58333333 0.08474576 0.04166667] [0.19444444 0.625 0.05084746 0.08333333] [0.05555556 0.125 0.05084746 0.08333333] [0.02777778 0.5 0.05084746 0.04166667] [0.19444444 0.625 0.10169492 0.20833333] [0.22222222 0.75 0.15254237 0.125 ] [0.13888889 0.41666667 0.06779661 0.08333333] [0.22222222 0.75 0.10169492 0.04166667] [0.08333333 0.5 0.06779661 0.04166667] [0.27777778 0.70833333 0.08474576 0.04166667] [0.19444444 0.54166667 0.06779661 0.04166667] [0.75 0.5 0.62711864 0.54166667] [0.58333333 0.5 0.59322034 0.58333333] [0.72222222 0.45833333 0.66101695 0.58333333] [0.33333333 0.125 0.50847458 0.5 ] [0.61111111 0.33333333 0.61016949 0.58333333] [0.38888889 0.33333333 0.59322034 0.5 ] [0.55555556 0.54166667 0.62711864 0.625 ] [0.16666667 0.16666667 0.38983051 0.375 ] [0.63888889 0.375 0.61016949 0.5 ] [0.25 0.29166667 0.49152542 0.54166667] [0.19444444 0. 0.42372881 0.375 ] [0.44444444 0.41666667 0.54237288 0.58333333] [0.47222222 0.08333333 0.50847458 0.375 ] [0.5 0.375 0.62711864 0.54166667] [0.36111111 0.375 0.44067797 0.5 ] [0.66666667 0.45833333 0.57627119 0.54166667] [0.36111111 0.41666667 0.59322034 0.58333333] [0.41666667 0.29166667 0.52542373 0.375 ] [0.52777778 0.08333333 0.59322034 0.58333333] [0.36111111 0.20833333 0.49152542 0.41666667] [0.44444444 0.5 0.6440678 0.70833333] [0.5 0.33333333 0.50847458 0.5 ] [0.55555556 0.20833333 0.66101695 0.58333333] [0.5 0.33333333 0.62711864 0.45833333] [0.58333333 0.375 0.55932203 0.5 ] [0.63888889 0.41666667 0.57627119 0.54166667] [0.69444444 0.33333333 0.6440678 0.54166667] [0.66666667 0.41666667 0.6779661 0.66666667] [0.47222222 0.375 0.59322034 0.58333333] [0.38888889 0.25 0.42372881 0.375 ] [0.33333333 0.16666667 0.47457627 0.41666667] [0.33333333 0.16666667 0.45762712 0.375 ] [0.41666667 0.29166667 0.49152542 0.45833333] [0.47222222 0.29166667 0.69491525 0.625 ] [0.30555556 0.41666667 0.59322034 0.58333333] [0.47222222 0.58333333 0.59322034 0.625 ] [0.66666667 0.45833333 0.62711864 0.58333333] [0.55555556 0.125 0.57627119 0.5 ] [0.36111111 0.41666667 0.52542373 0.5 ] [0.33333333 0.20833333 0.50847458 0.5 ] [0.33333333 0.25 0.57627119 0.45833333] [0.5 0.41666667 0.61016949 0.54166667] [0.41666667 0.25 0.50847458 0.45833333] [0.19444444 0.125 0.38983051 0.375 ] [0.36111111 0.29166667 0.54237288 0.5 ] [0.38888889 0.41666667 0.54237288 0.45833333] [0.38888889 0.375 0.54237288 0.5 ] [0.52777778 0.375 0.55932203 0.5 ] [0.22222222 0.20833333 0.33898305 0.41666667] [0.38888889 0.33333333 0.52542373 0.5 ] [0.55555556 0.54166667 0.84745763 1. ] [0.41666667 0.29166667 0.69491525 0.75 ] [0.77777778 0.41666667 0.83050847 0.83333333] [0.55555556 0.375 0.77966102 0.70833333] [0.61111111 0.41666667 0.81355932 0.875 ] [0.91666667 0.41666667 0.94915254 0.83333333] [0.16666667 0.20833333 0.59322034 0.66666667] [0.83333333 0.375 0.89830508 0.70833333] [0.66666667 0.20833333 0.81355932 0.70833333] [0.80555556 0.66666667 0.86440678 1. ] [0.61111111 0.5 0.69491525 0.79166667] [0.58333333 0.29166667 0.72881356 0.75 ] [0.69444444 0.41666667 0.76271186 0.83333333] [0.38888889 0.20833333 0.6779661 0.79166667] [0.41666667 0.33333333 0.69491525 0.95833333] [0.58333333 0.5 0.72881356 0.91666667] [0.61111111 0.41666667 0.76271186 0.70833333] [0.94444444 0.75 0.96610169 0.875 ] [0.94444444 0.25 1. 0.91666667] [0.47222222 0.08333333 0.6779661 0.58333333] [0.72222222 0.5 0.79661017 0.91666667] [0.36111111 0.33333333 0.66101695 0.79166667] [0.94444444 0.33333333 0.96610169 0.79166667] [0.55555556 0.29166667 0.66101695 0.70833333] [0.66666667 0.54166667 0.79661017 0.83333333] [0.80555556 0.5 0.84745763 0.70833333] [0.52777778 0.33333333 0.6440678 0.70833333] [0.5 0.41666667 0.66101695 0.70833333] [0.58333333 0.33333333 0.77966102 0.83333333] [0.80555556 0.41666667 0.81355932 0.625 ] [0.86111111 0.33333333 0.86440678 0.75 ] [1. 0.75 0.91525424 0.79166667] [0.58333333 0.33333333 0.77966102 0.875 ] [0.55555556 0.33333333 0.69491525 0.58333333] [0.5 0.25 0.77966102 0.54166667] [0.94444444 0.41666667 0.86440678 0.91666667] [0.55555556 0.58333333 0.77966102 0.95833333] [0.58333333 0.45833333 0.76271186 0.70833333] [0.47222222 0.41666667 0.6440678 0.70833333] [0.72222222 0.45833333 0.74576271 0.83333333] [0.66666667 0.45833333 0.77966102 0.95833333] [0.72222222 0.45833333 0.69491525 0.91666667] [0.41666667 0.29166667 0.69491525 0.75 ] [0.69444444 0.5 0.83050847 0.91666667] [0.66666667 0.54166667 0.79661017 1. ] [0.66666667 0.41666667 0.71186441 0.91666667] [0.55555556 0.20833333 0.6779661 0.75 ] [0.61111111 0.41666667 0.71186441 0.79166667] [0.52777778 0.58333333 0.74576271 0.91666667] [0.44444444 0.41666667 0.69491525 0.70833333]]
这篇关于使用sklearn进行量纲缩放的程序的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-26大厂数据结构与算法教程:入门级详解
- 2024-12-26大厂算法与数据结构教程:新手入门指南
- 2024-12-26Python编程入门指南
- 2024-12-26数据结构高级教程:新手入门及初级提升指南
- 2024-12-26并查集入门教程:从零开始学会并查集
- 2024-12-26大厂数据结构与算法入门指南
- 2024-12-26大厂算法与数据结构入门教程
- 2024-12-26二叉树入门教程:轻松掌握基础概念与操作
- 2024-12-26初学者指南:轻松掌握链表
- 2024-12-26平衡树入门教程:轻松理解与应用