餐巾计划问题
2021/7/29 23:08:11
本文主要是介绍餐巾计划问题,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
题面
餐巾计划问题
题解
隐式图问题。
我们考虑建立分层图,那么每层的状态即为时间,将每天拆成两个点,分别表示早上和晚上。
- 从源点向表示晚上的点连流量为当天所用餐巾数 \(r_i\),费用为 \(0\) 的边,表示每天晚上得到 \(r_i\) 条脏餐巾。
- 从表示早上的点向汇点连流量为当天所用餐巾数 \(r_i\),费用为 \(0\) 的边,表示每天早上用了 \(r_i\) 条餐巾,流满证明够用。
- 从每一天晚上向第二天晚上练流量为 \(inf\), 费用为 \(0\) 的边,表示把脏餐巾留到下一天晚上,因为不能留给下一天早上,所以不能向下一天早上连。
- 从每一天晚上向快洗时间之后的早上连流量为 \(inf\), 费用为快洗费用的边,表示把脏餐巾送去快洗,洗完之后的那天早上就能用了。
- 慢洗同理。
- 从源点向每天早上连流量为 \(inf\), 费用为购买餐巾费用的边,表示早上购买新餐巾。
然后跑最小费用最大流就好了,最大流保证了餐巾够用,最小费用保证了花费最少。
代码
#include<cstdio> #include<queue> #include<iostream> #include<cstring> using namespace std; typedef long long LL; const int N = 4e3 + 5, M = 1e5 + 5; const LL inf = 1e17; int head[N], nex[M], to[M], c[M], n, tot = 1; int S, T, t1, t2, w1, w2, p; LL maxflow = 0, ans = 0, w[M]; inline void add(int u, int v, int k, LL f) { nex[++tot] = head[u]; to[tot] = v; w[tot] = f; c[tot] = k; head[u] = tot; nex[++tot] = head[v]; to[tot] = u; w[tot] = 0; c[tot] = -k; head[v] = tot; } namespace Edmonds_Karp { int pre[N]; LL dis[N], incf[N]; bool inq[N]; queue < int > q; inline bool SPFA() { for(int i = 0; i < N; i++) dis[i] = inf; memset(inq, false, sizeof inq); dis[S] = 0; q.push(S); inq[S] = true; incf[S] = inf; while(!q.empty()) { int x = q.front(); q.pop(); inq[x] = false; for(int i = head[x]; i; i = nex[i]) { if(!w[i]) continue; if(dis[to[i]] > dis[x] + c[i]) { dis[to[i]] = dis[x] + c[i]; incf[to[i]] = min(incf[x], w[i]); pre[to[i]] = i; if(!inq[to[i]]) q.push(to[i]), inq[to[i]] = true; } } } return dis[T] < inf; } inline void update() { int x = T; while(x != S) { int i = pre[x]; w[i] -= incf[T], w[i ^ 1] += incf[T]; x = to[i ^ 1]; } maxflow += incf[T]; ans += dis[T] * incf[T]; } } using namespace Edmonds_Karp; int main() { scanf("%d", &n); S = 0; T = 2 * n + 1; for(int i = 1, x; i <= n; i++) scanf("%d", &x), add(S, i + n, 0, x), add(i, T, 0, x); scanf("%d%d%d%d%d", &p, &t1, &w1, &t2, &w2); for(int i = 1; i <= n; i++) { add(S, i, p, inf); if(i + t1 <= n) add(i + n, i + t1, w1, inf); if(i + t2 <= n) add(i + n, i + t2, w2, inf); if(i < n) add(i + n, i + 1 + n, 0, inf); } while(SPFA()) update(); printf("%lld\n", ans); return 0; }
这篇关于餐巾计划问题的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-20RabbitMQ教程:新手入门指南
- 2024-11-20Redis教程:新手入门指南
- 2024-11-20SaToken教程:新手入门指南
- 2024-11-20SpringBoot教程:从入门到实践
- 2024-11-20Java全栈教程:从入门到实战
- 2024-11-20Java微服务系统教程:入门与实践指南
- 2024-11-20Less教程:初学者快速上手指南
- 2024-11-20MyBatis教程:新手快速入门指南
- 2024-11-20QLExpress教程:初学者快速入门指南
- 2024-11-20订单系统教程:从入门到实践的全面指南