Ubuntu18.04 搭建YOLOV4环境
2021/8/2 7:09:16
本文主要是介绍Ubuntu18.04 搭建YOLOV4环境,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
下载代码,编译
git clone https://github.com/AlexeyAB/darknet cd darknet make
下载预训练权重:
验证:
caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$ ./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg GPU isn't used OpenCV isn't used - data augmentation will be slow mini_batch = 1, batch = 8, time_steps = 1, train = 0 layer filters size/strd(dil) input output 0 conv 32 3 x 3/ 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BF 1 conv 64 3 x 3/ 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BF 2 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF 3 route 1 -> 304 x 304 x 64 4 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF 5 conv 32 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BF 6 conv 64 3 x 3/ 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BF 7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 304 x 304 x 64 0.006 BF 8 conv 64 1 x 1/ 1 304 x 304 x 64 -> 304 x 304 x 64 0.757 BF 9 route 8 2 -> 304 x 304 x 128 10 conv 64 1 x 1/ 1 304 x 304 x 128 -> 304 x 304 x 64 1.514 BF 11 conv 128 3 x 3/ 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BF 12 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF 13 route 11 -> 152 x 152 x 128 14 conv 64 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BF 15 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF 16 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF 17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF 18 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF 19 conv 64 3 x 3/ 1 152 x 152 x 64 -> 152 x 152 x 64 1.703 BF 20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 152 x 152 x 64 0.001 BF 21 conv 64 1 x 1/ 1 152 x 152 x 64 -> 152 x 152 x 64 0.189 BF 22 route 21 12 -> 152 x 152 x 128 23 conv 128 1 x 1/ 1 152 x 152 x 128 -> 152 x 152 x 128 0.757 BF 24 conv 256 3 x 3/ 2 152 x 152 x 128 -> 76 x 76 x 256 3.407 BF 25 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 26 route 24 -> 76 x 76 x 256 27 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 28 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 29 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 31 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 32 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 34 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 35 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 37 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 38 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 40 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 41 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 43 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 44 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 45 Shortcut Layer: 42, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 46 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 47 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 48 Shortcut Layer: 45, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 49 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 50 conv 128 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 128 1.703 BF 51 Shortcut Layer: 48, wt = 0, wn = 0, outputs: 76 x 76 x 128 0.001 BF 52 conv 128 1 x 1/ 1 76 x 76 x 128 -> 76 x 76 x 128 0.189 BF 53 route 52 25 -> 76 x 76 x 256 54 conv 256 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 256 0.757 BF 55 conv 512 3 x 3/ 2 76 x 76 x 256 -> 38 x 38 x 512 3.407 BF 56 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 57 route 55 -> 38 x 38 x 512 58 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 59 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 60 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 61 Shortcut Layer: 58, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 62 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 63 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 64 Shortcut Layer: 61, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 65 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 66 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 67 Shortcut Layer: 64, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 68 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 69 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 70 Shortcut Layer: 67, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 71 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 72 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 73 Shortcut Layer: 70, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 74 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 75 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 76 Shortcut Layer: 73, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 77 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 78 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 79 Shortcut Layer: 76, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 80 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 81 conv 256 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 256 1.703 BF 82 Shortcut Layer: 79, wt = 0, wn = 0, outputs: 38 x 38 x 256 0.000 BF 83 conv 256 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 256 0.189 BF 84 route 83 56 -> 38 x 38 x 512 85 conv 512 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 512 0.757 BF 86 conv 1024 3 x 3/ 2 38 x 38 x 512 -> 19 x 19 x1024 3.407 BF 87 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 88 route 86 -> 19 x 19 x1024 89 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 90 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF 91 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF 92 Shortcut Layer: 89, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF 93 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF 94 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF 95 Shortcut Layer: 92, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF 96 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF 97 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF 98 Shortcut Layer: 95, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF 99 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF 100 conv 512 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x 512 1.703 BF 101 Shortcut Layer: 98, wt = 0, wn = 0, outputs: 19 x 19 x 512 0.000 BF 102 conv 512 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.189 BF 103 route 102 87 -> 19 x 19 x1024 104 conv 1024 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x1024 0.757 BF 105 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 106 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF 107 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 108 max 5x 5/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.005 BF 109 route 107 -> 19 x 19 x 512 110 max 9x 9/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.015 BF 111 route 107 -> 19 x 19 x 512 112 max 13x13/ 1 19 x 19 x 512 -> 19 x 19 x 512 0.031 BF 113 route 112 110 108 107 -> 19 x 19 x2048 114 conv 512 1 x 1/ 1 19 x 19 x2048 -> 19 x 19 x 512 0.757 BF 115 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF 116 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 117 conv 256 1 x 1/ 1 19 x 19 x 512 -> 19 x 19 x 256 0.095 BF 118 upsample 2x 19 x 19 x 256 -> 38 x 38 x 256 119 route 85 -> 38 x 38 x 512 120 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 121 route 120 118 -> 38 x 38 x 512 122 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 123 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF 124 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 125 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF 126 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 127 conv 128 1 x 1/ 1 38 x 38 x 256 -> 38 x 38 x 128 0.095 BF 128 upsample 2x 38 x 38 x 128 -> 76 x 76 x 128 129 route 54 -> 76 x 76 x 256 130 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 131 route 130 128 -> 76 x 76 x 256 132 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 133 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF 134 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 135 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF 136 conv 128 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BF 137 conv 256 3 x 3/ 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BF 138 conv 255 1 x 1/ 1 76 x 76 x 256 -> 76 x 76 x 255 0.754 BF 139 yolo [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.20 nms_kind: greedynms (1), beta = 0.600000 140 route 136 -> 76 x 76 x 128 141 conv 256 3 x 3/ 2 76 x 76 x 128 -> 38 x 38 x 256 0.852 BF 142 route 141 126 -> 38 x 38 x 512 143 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 144 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF 145 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 146 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF 147 conv 256 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BF 148 conv 512 3 x 3/ 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BF 149 conv 255 1 x 1/ 1 38 x 38 x 512 -> 38 x 38 x 255 0.377 BF 150 yolo [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.10 nms_kind: greedynms (1), beta = 0.600000 151 route 147 -> 38 x 38 x 256 152 conv 512 3 x 3/ 2 38 x 38 x 256 -> 19 x 19 x 512 0.852 BF 153 route 152 116 -> 19 x 19 x1024 154 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 155 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF 156 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 157 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF 158 conv 512 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BF 159 conv 1024 3 x 3/ 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BF 160 conv 255 1 x 1/ 1 19 x 19 x1024 -> 19 x 19 x 255 0.189 BF 161 yolo [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05 nms_kind: greedynms (1), beta = 0.600000 Total BFLOPS 128.459 avg_outputs = 1068395 Loading weights from ./yolov4.weights... seen 64, trained: 32032 K-images (500 Kilo-batches_64) Done! Loaded 162 layers from weights-file Detection layer: 139 - type = 28 Detection layer: 150 - type = 28 Detection layer: 161 - type = 28 data/dog.jpg: Predicted in 19868.358000 milli-seconds. bicycle: 92% dog: 98% truck: 92% pottedplant: 33% Not compiled with OpenCV, saving to predictions.png instead caozilong@caozilong-Vostro-3268:~/Workspace/yolo/darknet$
./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/person.jpg
结束!
这篇关于Ubuntu18.04 搭建YOLOV4环境的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-27消息中间件底层原理资料详解
- 2024-11-27RocketMQ底层原理资料详解:新手入门教程
- 2024-11-27MQ底层原理资料详解:新手入门教程
- 2024-11-27MQ项目开发资料入门教程
- 2024-11-27RocketMQ源码资料详解:新手入门教程
- 2024-11-27本地多文件上传简易教程
- 2024-11-26消息中间件源码剖析教程
- 2024-11-26JAVA语音识别项目资料的收集与应用
- 2024-11-26Java语音识别项目资料:入门级教程与实战指南
- 2024-11-26SpringAI:Java 开发的智能新利器