Redis学习--渐进式rehash实现原理

2021/8/11 2:35:28

本文主要是介绍Redis学习--渐进式rehash实现原理,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

哈希冲突问题

Redis使用哈希表来存放键值对数据,在插入新键值对数据时,会先按照”key“来计算哈希值,再根据哈希值和哈希表的sizemask来计算出该”key“在对于哈希数组中的索引值,然后将键值对数据封装成dictEntry对象并放入到索引值对应的哈希数组中。

不同的Key经过相同哈希函数计算后可能得到相同的哈希值和索引值,当两个或多个Key被分配到哈希数组相同的索引位置时,成为哈希冲突,Redis使用单向链表的方式来解决哈希冲突。最后增加的键值对数据会被放置在单向链表的头部位置。

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
    /* 使用dictAddRaw来创建一个新的entry */
    dictEntry *entry = dictAddRaw(d,key,NULL);
    if (!entry) return DICT_ERR;
    /* 设置新entry的value数据 */
    dictSetVal(d, entry, val);
    return DICT_OK;
}

/* Low level add or find:
 * This function adds the entry but instead of setting a value returns the
 * dictEntry structure to the user, that will make sure to fill the value
 * field as he wishes.
 *
 * This function is also directly exposed to the user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey,NULL);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned, and "*existing" is populated
 * with the existing entry if existing is not NULL.
 *
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
    long index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    /* 获取到新增key在哈希数组中的索引位置 */
    if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry.
     * Insert the element in top, with the assumption that in a database
     * system it is more likely that recently added entries are accessed
     * more frequently. */
    /* 找到当前使用的哈希表,
     * 如果处于rehash状态则新增的键值对数据放入到ht[1]中
     * 否则将新增的键值对数据放入到ht[0]中
     */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    /* 创建新的entry对象 */
    entry = zmalloc(sizeof(*entry));
    /* 将当前位置上数据赋值给新entry的next指针 */
    entry->next = ht->table[index];
    /* 将心得entry对象赋值给当前位置,即将新enrty放到单向链表的头部 */
    ht->table[index] = entry;
    /* 增加哈希表的已使用值 */
    ht->used++;

    /* Set the hash entry fields. */
    /* 设置新entry的key数据 */
    dictSetKey(d, entry, key);
    return entry;
}

在按照key进行哈希查找时,会先按照key来计算出对应的哈希值和索引值,再按照索引值找到哈希数组对应位置上的单向链表,再依次遍历单向链表中的每个entry对象并使用查找的key和entry的key值进行对比,从而找到特定key的entry对象。

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    uint64_t h, idx, table;
	
    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    /* 如果当前字典处于rehash状态,则辅助完成1条数据迁移工作 */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    /* 计算key对应的hash值 */
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        /* 计算key对应的索引值 */
        /* 在rehash过程中,ht[0]和ht[1]的sizemask不同,因此需要分别计算 */
        idx = h & d->ht[table].sizemask;
        /* 获取到哈希数组上指定索引位置上的单向链表 */
        he = d->ht[table].table[idx];
        
        /* 遍历单向链表 */
        while(he) {
            /* 针对单向链表上每个entry,对比entry存储的key和要查找的key */
            if (key==he->key || dictCompareKeys(d, key, he->key))
                /* 找到后立即返回,同一个key只会存在一份数据 */
                return he;
            he = he->next;
        }
        /* 如果未处于rehas状态,处理完ht[0]后无需再处理ht[1] */
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

解决哈希冲突

在每个哈希表对象中,使用size字段来存放该哈希表的长度,使用used字段来存放哈希表的已使用量:

/* This is our hash table structure. Every dictionary has two of this as we
 * implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
    /* 使用数组方式来存放哈希表数据 */
    dictEntry **table;
    /* 哈希表长度 */
    unsigned long size;
    /* 哈希表长度掩码,用来计算哈希值对应的数组下标 */
    unsigned long sizemask;
    /* 哈希表上已使用量,即当前存储的entry总数量 */
    unsigned long used;
} dictht;

used * 100 / size < HASHTABLE_MIN_FILL(10)时,哈希数组资源浪费严重,需要对哈希表进行缩容,将哈希数表长度扩展为第一个大于等于used*2的2的n次幂。

used / size > dict_force_resize_ratio(5) 时,哈希数组上哈希冲突严重,需要对哈希表进行扩容,将哈希数表长度缩小为第一个大于等于used的2的n次幂。

哈希扩容操作

在Redis执行命令请求增加新键时,会调用函数dictAddRaw或dictAdd-->dictAddRaw来进行插入,在函数dictAddRaw中会使用_dictKeyIndex --> _dictExpandIfNeeded 来判断当前哈希表是否需要扩容。

static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK;

    /* If the hash table is empty expand it to the initial size. */
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
     * table (global setting) or we should avoid it but the ratio between
     * elements/buckets is over the "safe" threshold, we resize doubling
     * the number of buckets. */
    if (d->ht[0].used >= d->ht[0].size &&
        (dict_can_resize ||
         d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
        return dictExpand(d, d->ht[0].used*2);
    }
    return DICT_OK;
}

哈希表的扩容操作主要由Redis插入新键值对数据的命令来触发,如:

  • set类型的增加新键值对时调用setTypeAdd-->dictAddRaw来触发。
  • zset类型的增加新键值对时调用zunionInterGenericCommand-->dictAddRaw来触发。
  • string类型的增加新键值对时调用setGenericCommand-->setKey-->dbAdd-->dictAdd-->dictAddRaw来触发。

哈希缩容操作

在判断哈希表是否需要缩容时,通过函数tryResizeHashTables来:

  • 调用htNeedsResize判断当前dict是否需要缩容
  • 对需要缩容的dict调用dictResize来进行缩容,按照当前哈希表的已使用量(used)作为缩容标准。
/* If the percentage of used slots in the HT reaches HASHTABLE_MIN_FILL
 * we resize the hash table to save memory */
void tryResizeHashTables(int dbid) {
    if (htNeedsResize(server.db[dbid].dict))
        dictResize(server.db[dbid].dict);
    if (htNeedsResize(server.db[dbid].expires))
        dictResize(server.db[dbid].expires);
}

/* This is the initial size of every hash table */
#define DICT_HT_INITIAL_SIZE     4
/* Hash table parameters */
/* Minimal hash table fill 10% */
#define HASHTABLE_MIN_FILL        10      
int htNeedsResize(dict *dict) {
    long long size, used;

    size = dictSlots(dict);
    used = dictSize(dict);
    /* 当前使用量小于当前长度的10%时,进行缩容 */
    return (size > DICT_HT_INITIAL_SIZE &&
            (used*100/size < HASHTABLE_MIN_FILL));
}


/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{
    int minimal;

    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
    /* 按照当前使用量进行缩容 */
    minimal = d->ht[0].used;
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
    return dictExpand(d, minimal);
}

Redis按照redisServer.hz参数控制的频率执行定时任务执行过程中,会调用serverCron-->databasesCron函数,在databasesCron函数执行过程中,如果当前未执行AOF重写或RDB备份操作,则:

  • 判断当前实例上所有redisDB是否需要缩容,需要则调用dictResize进行缩容操作。
  • 判断当前实例上是否存在rehash操作,存在则调用incrementallyRehash函数进行增量处理。
/* This function handles 'background' operations we are required to do
 * incrementally in Redis databases, such as active key expiring, resizing,
 * rehashing. */
void databasesCron(void) {
    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled) {
        if (server.masterhost == NULL) {
            activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
        } else {
            expireSlaveKeys();
        }
    }

    /* Defrag keys gradually. */
    if (server.active_defrag_enabled)
        activeDefragCycle();

    /* Perform hash tables rehashing if needed, but only if there are no
     * other processes saving the DB on disk. Otherwise rehashing is bad
     * as will cause a lot of copy-on-write of memory pages. */
    /* 在没有RDB备份或AOF日志重写时,才会触发rehash操作 */
    if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) {
        /* We use global counters so if we stop the computation at a given
         * DB we'll be able to start from the successive in the next
         * cron loop iteration. */
        static unsigned int resize_db = 0;
        static unsigned int rehash_db = 0;
        int dbs_per_call = CRON_DBS_PER_CALL;
        int j;

        /* Don't test more DBs than we have. */
        if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;

        /* Resize */
        for (j = 0; j < dbs_per_call; j++) {
            tryResizeHashTables(resize_db % server.dbnum);
            resize_db++;
        }

        /* Rehash */
        if (server.activerehashing) {
            for (j = 0; j < dbs_per_call; j++) {
                int work_done = incrementallyRehash(rehash_db);
                if (work_done) {
                    /* If the function did some work, stop here, we'll do
                     * more at the next cron loop. */
                    break;
                } else {
                    /* If this db didn't need rehash, we'll try the next one. */
                    rehash_db++;
                    rehash_db %= server.dbnum;
                }
            }
        }
    }
}

渐进式rehash操作

无论时缩容还是扩容,都会调用dictExpand函数来处理,按照新的hash表容量(unsigned long size)计算出一个接近且大于size的2^N的值,并以此值来初始化dictht对象,再赋值给d->ht[1],同时设置rehash状态值d->rehashidx =0。

/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
{
    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    dictht n; /* the new hash table */
    unsigned long realsize = _dictNextPower(size);

    /* Rehashing to the same table size is not useful. */
    if (realsize == d->ht[0].size) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

/* Our hash table capability is a power of two */
/* 哈希表的长度必须是2的N次方,因此必须选择一个接近且大于指定长度的2^N值 */
static unsigned long _dictNextPower(unsigned long size)
{
    unsigned long i = DICT_HT_INITIAL_SIZE;

    if (size >= LONG_MAX) return LONG_MAX + 1LU;
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}

函数dictExpand仅仅是初始化新哈希表ht[1]并设置dict的状态为rehash状态(rehashidx = 0),为不严重阻塞正常命令请求,采用渐进式哈希(rehashing)的机制来完成数据从ht[0]到ht[1]的迁移。rehash操作以哈希桶为基本单位调用dictRehash函数来完成。

rehash操作按照触发方式可以分为:

  • active rehashing(主动rehash操作),Redis实例的定时任务通过serverCron-->databasesCron-->incrementallyRehash来触发,按照每次处理100个哈希桶+循环执行1秒的方式来处理。
  • lazy rehashing(惰性rehah操作),在对dict做增删改查的过程中,如dictFind、dictAdd、dictDelete等操作时触发,按照每次处理1个哈希桶的方式进行处理。

主动Rehash操作

在函数incrementallyRehash中,当哈希表处于rehash状态(rehashidx不等于-1)时,会调用dictRehashMilliseconds来进行增量处理,按照每批次出100个键的方式循环执行1ms(硬编码在程序中),避免rehash操作执行时间过长阻塞其他客户请求。

/* Our hash table implementation performs rehashing incrementally while
 * we write/read from the hash table. Still if the server is idle, the hash
 * table will use two tables for a long time. So we try to use 1 millisecond
 * of CPU time at every call of this function to perform some rehahsing.
 *
 * The function returns 1 if some rehashing was performed, otherwise 0
 * is returned. */
int incrementallyRehash(int dbid) {
    /* Keys dictionary */
    if (dictIsRehashing(server.db[dbid].dict)) {
        dictRehashMilliseconds(server.db[dbid].dict,1);
        return 1; /* already used our millisecond for this loop... */
    }
    /* Expires */
    if (dictIsRehashing(server.db[dbid].expires)) {
        dictRehashMilliseconds(server.db[dbid].expires,1);
        return 1; /* already used our millisecond for this loop... */
    }
    return 0;
}

/* 按照rehashidx是否不等于-1来判断当前dict对象是否处于rehas状态 */
#define dictIsRehashing(d) ((d)->rehashidx != -1)

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

惰性rehah操作

在dictFind等对dict的增删改查的操作过程中,如果当前dict处于rehash状态,则调用_dictRehashStep(d)来迁移1个哈希桶的数据。

dictEntry *dictFind(dict *d, const void *key)
{
    if (dictIsRehashing(d)) _dictRehashStep(d);
}

/* This function performs just a step of rehashing, and only if there are
 * no safe iterators bound to our hash table. When we have iterators in the
 * middle of a rehashing we can't mess with the two hash tables otherwise
 * some element can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

由于惰性rehash的操作仅迁移1个哈希桶的数据,因此不会对操作产生明显的性能影响。

Rehash操作阻塞问题

无论时主动rehash还是惰性rehash操作,都会严格控制rehash操作的耗时,不会阻塞正常命令请求,但:

  • 在rehash的初始阶段,需要按照zcalloc(realsize*sizeof(dictEntry*))来为新的哈希表ht[1]申请内存。
  • 在rehash的结尾阶段,需要对老的哈希表ht[0]进行回收并释放内存。

当涉及到的哈希表size较大时,需要申请或释放较大的内存资源,造成Redis服务器的内存使用量明显变化,同时影响到客户端命令请求的执行时间。如果请求执行过程中触发,则可能导致简单命令耗时较长被记录到慢日志中。

参考资料

Redis的内部扩容机制

Redis关键点(rehash)

浅谈Redis中的Rehash机制



这篇关于Redis学习--渐进式rehash实现原理的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程