ai 写诗
2021/8/12 6:36:30
本文主要是介绍ai 写诗,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import torch import torch as t import numpy as np import random from torch.utils.data import DataLoader from torch import optim from torch import nn from torchnet import meter import tqdm class Config(object): num_layers = 3 # LSTM层数 data_path = 'data/' # 诗歌的文本文件存放路径 pickle_path = 'tang.npz' # 预处理好的二进制文件 author = None # 只学习某位作者的诗歌 constrain = None # 长度限制 category = 'poet.tang' # 类别,唐诗还是宋诗歌(poet.song) lr = 1e-3 weight_decay = 1e-4 epoch = 5000 batch_size = 16 maxlen = 125 # 超过这个长度的之后字被丢弃,小于这个长度的在前面补空格 plot_every = 1000 # 每20个batch 可视化一次 use_gpu = True # use_env = True # 是否使用visodm env = 'poetry' # visdom env max_gen_len = 200 # 生成诗歌最长长度 debug_file = '/tmp/debugp' model_path = "./cps_new/tang_0.pth" # 预训练模型路径 prefix_words = '床前明月光,疑是地上霜。' # 不是诗歌的组成部分,用来控制生成诗歌的意境 start_words = '窗前明月光' # 诗歌开始 acrostic = False # 是否是藏头诗 model_prefix = 'cps_new/tang' # 模型保存路径 embedding_dim = 256 hidden_dim = 512 class PoetryModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).__init__() self.hidden_dim = hidden_dim # 词向量层,词表大小 * 向量维度 self.embeddings = nn.Embedding(vocab_size, embedding_dim) # 网络主要结构 self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=Config.num_layers, dropout = 0.1) # 进行分类 self.linear = nn.Linear(self.hidden_dim, vocab_size) def forward(self, input, hidden=None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new(Config.num_layers, batch_size, self.hidden_dim).fill_(0).float() c_0 = input.data.new(Config.num_layers, batch_size, self.hidden_dim).fill_(0).float() else: h_0, c_0 = hidden # 输入 序列长度 * batch(每个汉字是一个数字下标), # 输出 序列长度 * batch * 向量维度 embeds = self.embeddings(input) # 输出hidden的大小: 序列长度 * batch * hidden_dim output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.linear(output.view(seq_len * batch_size, -1)) return output, hiddendef isChinese(word): for ch in word: if '\u4e00' <= ch <= '\u9fff': return True return False def Load(): print("Begin Loading...") datas = np.loadtxt("./data_new.txt", dtype = str, delimiter = '\n', encoding = "utf-8") len_datas = len(datas) _char = [] for i in range(len_datas): # if len(datas[i]) == 24: for j in range(len(datas[i])): _char.append(datas[i][j]) print("Done") _char = list(set(_char)) return datas, _char if True: print("正在初始化......") datas, char = Load() word2ix = {} ix2word = {} char.append('</s>') char.append('<START>') char.append('<EOP>') index = 0 for item in char: ix2word[index] = item index += 1 for key in ix2word: word2ix[ix2word[key]]=key len_datas = len(datas) cnt = 0; for i in range(len_datas): if len(datas[i]) == 24: cnt += 1 data = np.empty([cnt, 26], dtype = int) index = 0 for i in range(len_datas): if len(datas[i]) != 24: continue tmp = [] tmp.append(word2ix['<START>']) for j in range(len(datas[i])): tmp.append(word2ix[datas[i][j]]) tmp.append(word2ix['<EOP>']) data[index] = tmp index += 1 data = t.from_numpy(data) dataloader = DataLoader(data, batch_size=Config.batch_size, shuffle=True, num_workers=0) def generate(model, start_words, ix2word, word2ix, prefix_words=None): results = list(start_words) start_words_len = len(start_words) # 第一个词语是<START> input = t.Tensor([word2ix['<START>']]).view(1, 1).long() if Config.use_gpu: input = input.cuda() hidden = None # 若有风格前缀,则先用风格前缀生成hidden if prefix_words: # 第一个input是<START>,后面就是prefix中的汉字 # 第一个hidden是None,后面就是前面生成的hidden for word in prefix_words: output, hidden = model(input, hidden) input = input.data.new([word2ix[word]]).view(1, 1) # 开始真正生成诗句,如果没有使用风格前缀,则hidden = None,input = <START> # 否则,input就是风格前缀的最后一个词语,hidden也是生成出来的 for i in range(24): output, hidden = model(input, hidden) # 如果还在诗句内部,输入就是诗句的字,不取出结果,只为了得到 # 最后的hidden if i < start_words_len: w = results[i] input = input.data.new([word2ix[w]]).view(1, 1) # 否则将output作为下一个input进行 else: top_index = output.data[0].topk(1)[1][0].item() w = ix2word[top_index] results.append(w) input = input.data.new([top_index]).view(1, 1) # if w == '<EOP>': # del results[-1] # break return results # 生成藏头诗 def gen_acrostic(model, start_words, ix2word, word2ix, prefix_words=None): result = [] start_words_len = len(start_words) input = (t.Tensor([word2ix['<START>']]).view(1, 1).long()) if Config.use_gpu: input = input.cuda() # 指示已经生成了几句藏头诗 index = 0 pre_word = '<START>' hidden = None # 存在风格前缀,则生成hidden if prefix_words: for word in prefix_words: output, hidden = model(input, hidden) input = (input.data.new([word2ix[word]])).view(1, 1) # 开始生成诗句 for i in range(Config.max_gen_len): output, hidden = model(input, hidden) top_index = output.data[0].topk(1)[1][0].item() w = ix2word[top_index] # 说明上个字是句末 if pre_word in {'。', ',', '?', '!', '<START>'}: if index == start_words_len: break else: w = start_words[index] index += 1 input = (input.data.new([word2ix[w]])).view(1, 1) else: input = (input.data.new([top_index])).view(1, 1) result.append(w) pre_word = w return result # 根据 topic 生成 def gen_topic(model, start_words, ix2word, word2ix, prefix_words=None): results = list(start_words) start_words_len = len(start_words) # 第一个词语是<START> input = t.Tensor([word2ix['<START>']]).view(1, 1).long() if Config.use_gpu: input = input.cuda() hidden = None # 若有风格前缀,则先用风格前缀生成hidden if prefix_words: # 第一个input是<START>,后面就是prefix中的汉字 # 第一个hidden是None,后面就是前面生成的hidden prefix_words_len = len(prefix_words) for word in prefix_words: output, hidden = model(input, hidden) input = input.data.new([word2ix[word]]).view(1, 1) for i in range(24 - prefix_words_len): output, hidden = model(input, hidden) # 如果还在诗句内部,输入就是诗句的字,不取出结果,只为了得到 # 最后的hidden if i < start_words_len: w = results[i] input = input.data.new([word2ix[w]]).view(1, 1) # 否则将output作为下一个input进行 else: top_index = output.data[0].topk(1)[1][0].item() w = ix2word[top_index] input = input.data.new([top_index]).view(1, 1) if w == '<EOP>': del results[-1] break # 开始真正生成诗句,如果没有使用风格前缀,则 hidden = None,input = <START> # 否则,input就是风格前缀的最后一个词语,hidden也是生成出来的 output, hidden = model(input, hidden) top_index = output.data[0].topk(1)[1][0].item() w = ix2word[top_index] input = input.data.new([word2ix[w]]).view(1, 1) for i in range(24): output, hidden = model(input, hidden) # 如果还在诗句内部,输入就是诗句的字,不取出结果,只为了得到 # 最后的hidden if i < start_words_len: w = results[i] input = input.data.new([word2ix[w]]).view(1, 1) # 否则将output作为下一个input进行 else: top_index = output.data[0].topk(1)[1][0].item() w = ix2word[top_index] results.append(w) input = input.data.new([top_index]).view(1, 1) if w == '<EOP>': del results[-1] break return results def train(): if Config.use_gpu: Config.device = t.device("cuda") else: Config.device = t.device("cpu") device = Config.device # 定义模型 model = PoetryModel(len(word2ix), embedding_dim=Config.embedding_dim, hidden_dim = Config.hidden_dim) Configimizer = optim.Adam(model.parameters(),lr=Config.lr) criterion = nn.CrossEntropyLoss() model.load_state_dict(t.load(Config.model_path)) # 转移到相应计算设备上 model.to(device) loss_meter = meter.AverageValueMeter() # 进行训练 f = open('result.txt','w') for epoch in range(Config.epoch): loss_meter.reset() for li,data_ in tqdm.tqdm(enumerate(dataloader)): data_ = data_.long().transpose(1,0).contiguous() # 注意这里,也转移到了计算设备上 data_ = data_.to(device) Configimizer.zero_grad() # n个句子,前n-1句作为输入,后n-1句作为输出,二者一一对应 input_,target = data_[:-1,:],data_[1:,:] output,_ = model(input_) # 这里为什么view(-1) # if (1+li)%2436==0: # print(target.shape,target.view(-1).shape) loss = criterion(output,target.view(-1)) loss.backward() Configimizer.step() loss_meter.add(loss.item()) # 进行可视化 if (1+li)%1000 == 0: print("训练损失为%s"%(str(loss_meter.mean))) word = "明月" gen_poetry = ''.join(gen_topic(model,'',ix2word,word2ix,word)) print(gen_poetry) t.save(model.state_dict(),'%s_%s.pth'%(Config.model_prefix,epoch % 2)) if __name__ == '__main__': train() def userTest(): while True: print("欢迎使用唐诗生成器,\n" "输入1 进入首句生成模式\n" "输入2 进入藏头诗生成模式\n" "输入3 进入主题诗生成模式\n") mode = int(input()) model = PoetryModel(len(ix2word), Config.embedding_dim, Config.hidden_dim) model.load_state_dict(t.load("./cps_new/tang_0.pth")) if Config.use_gpu: model.to(t.device('cuda')) if mode == 1: print("请输入您想要的诗歌首句,必须是五言") # start_words = str(input()) start_words = '' gen_poetry = ''.join(generate(model, start_words, ix2word, word2ix)) print("生成的诗句如下:%s\n" % (gen_poetry)) elif mode == 2: print("请输入您想要的诗歌藏头部分,必须是 4 个字") start_words = str(input()) gen_poetry = ''.join(gen_acrostic(model, start_words, ix2word, word2ix)) print("生成的诗句如下:%s\n" % gen_poetry) elif mode == 3: print("请输入您想要的诗歌topic,必须是 2 个字") # prefix_words = str(input()) gen_poetry = ''.join(gen_topic(model, Config.start_words, ix2word, word2ix, Config.prefix_words)) print("生成的诗句如下:%s\n" % gen_poetry) if __name__ == '__main__': userTest()
这篇关于ai 写诗的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-10TiDB 8.5 LTS 发版——支持无限扩展,开启 AI 就绪新时代
- 2025-01-07SaaS工具的智能升级:AI Agent赋能的潜力与应用前景
- 2025-01-07SaaS+AI如何重新定义企业问题解决方式?
- 2025-01-04如何利用AI看板工具提升团队协作效率?10大深度评测与实用技巧
- 2025-01-03带有自反功能的自适应检索增强生成系统
- 2025-01-03FAISS向量数据库在生产LLM应用中的使用指南
- 2025-01-03掌握RAG:深入探讨文本分割技巧
- 2025-01-03深入探究结构化输出的应用技巧
- 2025-01-03因果推断的基本问题:现代视角下的统计挑战
- 2025-01-03预测的艺术:预AI时代的滤波技术讲解