并发编程之:Atomic
2021/9/1 14:06:24
本文主要是介绍并发编程之:Atomic,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
大家好,我是小黑,一个在互联网苟且偷生的农民工。
在开始讲今天的内容之前,先问一个问题,使用int类型做加减操作是不是线程安全的呢?比如 i++ ,++i,i=i+1这样的操作在并发情况下是否会有问题?
我们通过运行代码来看一下。
public class AtomicDemo { public static void main(String[] args) throws InterruptedException { Data data = new Data(); Thread a = new Thread(() -> { for (int i = 0; i < 100000; i++) { System.out.println(Thread.currentThread().getName()+"_"+data.increment()); } }, "A"); Thread b = new Thread(() -> { for (int i = 0; i < 100000; i++) { System.out.println(Thread.currentThread().getName()+"_"+data.increment()); } }, "B"); a.start(); b.start(); // 等待A,B线程执行完毕 a.join(); b.join(); System.out.println(data.getI()); } } class Data { private volatile int i = 0; public int increment() { i++; return i; } public int getI() { return i; } }
以上代码比较简单,通过A,B两个线程同时对Data对象中的i执行++操作,各自执行100000次,最后输出,如果说i++操作时线程安全的,那么最后输出的结果应该是200000,但是我们运行代码会看到如下结果:
我们发现最后输出的并不是200000,而是199982,如果多执行几次的话,这个结果会发生变化,并且大多数情况下不会是200000。这主要是因为int类型的++操作不是原子的,i++同等于i=i+1,也就是加1这一步和对i重新赋值这一步不是同时完成的,不具备原子性,所以我们得出结论int类型的操作不是线程安全的。
在很多实际场景中都需要对一个数据进行并发操作,比如电商的秒杀活动中,对一个商品数量的扣减,那么我们想保证安全性应该怎么做呢?
首先我们可以想到的就是使用synchronized关键字对increment()这个方法加锁,这样就能保证每次只有一个线程能访问。
但是之前的文章中我们有讲到synchronized是一个重量级的悲观锁,我们的业务场景的并发可能是一段时间内的,多数情况下可能并不会有很多竞争,所以有没有更好的处理方式呢,答案就是通过AtomicInteger。
AtomicInteger
AtomicInteger是java.util.concurrent.atomic包中的一个类。我们看官方文档对于这个包的描述,说它是支持单个变量上的无锁线程安全编程的工具包,好像和我们期望的一样,在不加锁的情况下达到线程安全。
我们来修改一下上面例子的代码。
class Data { private volatile AtomicInteger i = new AtomicInteger(0); public int increment() { return i.incrementAndGet(); } public int getI() { return i.get(); } }
很简单,将原来的int修改为AtomicInteger,在执行increment()方法进行增加操作时,调用incrementAndGet()方法就可以了。同样我们运行代码,会发现,不管运行多少次,代码最后执行的结果都是一样的,200000。所以我们说AtomicInteger是线程安全的。除了incrementAndGet()方法以外,还有很多其他的操作,比如decrementAndGet(),getAndIncrement(),getAndDecrement(),getAndAdd(int delta),addAndGet(int delta)等等,实际上就是对i++,++i,i=i+n,i+=n这些操作的原子实现。
除了AtomicInteger以外,java.util.concurrent.atomic包中还有一些其他类型,比如AtomicBoolean,AtomicLong等。
实现原理
那么AtomicInteger是如何实现在不使用synchronized的情况下保证原子性的呢?我们来看一下源码。
public class AtomicInteger extends Number implements java.io.Serializable { private static final Unsafe unsafe = Unsafe.getUnsafe(); // value在内存中的地址偏移值 private static final long valueOffset; static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } // value为volatile的保证内存可见性 private volatile int value; public final int incrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, 1) + 1; } } public final class Unsafe { public final int getAndAddInt(Object var1, long var2, int var4) { int var5; do { // 获取volatile的Int,保证拿到的值是最新的 var5 = this.getIntVolatile(var1, var2); // compareAndSwapInt 比较并交换 native方法 } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5; } }
通过源码我们看到在incrementAndGet()方法中调用了Unsafe类的getAndAddInt方法,在这个方法内部对value进行compareAndSwapInt操作。通过这个方法名我们就可以看出是比较并交换,也就是我们之前提到过的CAS。也就是在执行赋值操作时,先看一下当前值是不是我加之前的值,如果不是,那我就重新加一次之后再进行比较,是一个循环的过程,这个过程也称作自旋。
CAS这种处理方式虽然很高效的解决了原子操作,但是它仍然存在三个问题,在实际开发中一定要注意,结合自己的实际业务场景使用。
ABA问题
什么是ABA问题呢,通俗理解,就是你大爷还是你大爷,你大妈已经不是你大妈了~
什么意思呢?就是当线程1取到A之后,有另一个线程2把A变成了B,又变成了A,当线程1再修改完值进行CAS比较时,发现值还是A,和自己取到的一样,就直接更新了,但是在这个过程中,这个A中间是发生过变化的。就好比一个小偷,偷了别人家钱然后再还回来,还是原来的钱吗?虽然你的钱没变,但是这个小偷已经触犯了法律,而你自己还不知道。
为了解决这个问题,atomic包中提供了一个类,我们看下是如何解决的。
public static void main(String[] args) throws InterruptedException { AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0); new Thread(() -> { try { int stamp = ref.getStamp(); String reference = ref.getReference(); System.out.println("线程1拿到的值:" + reference + " stamp:" + stamp); // sleep 2秒模拟线程切换到2 TimeUnit.SECONDS.sleep(2); boolean success = ref.compareAndSet(reference, "C", stamp, stamp + 1); System.out.println(Thread.currentThread().getName() + " " + success); } catch (InterruptedException e) { e.printStackTrace(); } }, "线程1").start(); new Thread(() -> { // 先改为B int stamp = ref.getStamp(); String reference = ref.getReference(); System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp); ref.compareAndSet(reference, "B", stamp, stamp + 1); // 再改回A stamp = ref.getStamp(); reference = ref.getReference(); System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp); ref.compareAndSet(reference, "A", ref.getStamp(), stamp + 1); }, "线程2").start(); }
我们可以看到AtomicStampedReference的compareAndSet()方法有4个参数:
- expectedReference:表示期望的引用值
- newReference:表示要修改后的新引用值
- expectedStamp:表示期望的戳(版本号)
- newStamp:表示修改后新的戳(版本号)
什么意思呢?就是在修改时不光比较值是不是和获取到的一样,还要比较版本号。这样的话,每次操作时都对版本号加1,那么就算值从A改为B再改回A,但是版本号从0改成了1又改成了2,并没有变回0,就可以避免ABA问题的发生。
循环时间变长
在并发非常大的情况下,使用CAS可能会存在一些线程一直循环修改不成功,导致循环时间变长,会给CPU带来很大的执行开销。并且由于AtomicReference中的引用是volatile的,为了保证内存可见性,需要保证缓存一致性,通过总线传输数据,当有大量的CAS循环时,会产生总线风暴。
只能保证一个变量的原子操作
CAS的第三个问题就是AtomicReference中只能存放一个变量,如果需要保证多个变量操作的原子性,是做不到的。对于这种情况只能使用synchronized或者juc包中的Lock工具。
小结
简单做个小结,使用int类型在并发场景下存在线程安全问题,可以用AtomicInteger来保证原子性操作,Atomic是通过CAS做到无锁线程安全的。但是CAS有三个问题,第一ABA问题,可以通过AtomicStampedReference解决;第二竞争激烈情况下循环时间会变长,会产生总线风暴;第三只能保证一个变量的原子操作。
具体业务场景中是使用synchronized,Lock等锁工具还是使用Atomic的CAS无锁操作,还是要结合场景考虑。
好的,今天的内容就到这里,我们下期见。
并发编程之:Atomic
并发编程之:线程
关注我的微信公众号【小黑说Java】,更多干货内容。
这篇关于并发编程之:Atomic的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-10Rakuten 乐天积分系统从 Cassandra 到 TiDB 的选型与实战
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用