C++OpenCV系统学习(17)——图像分割与抠图(5)证件照背景替换
2021/9/19 11:06:18
本文主要是介绍C++OpenCV系统学习(17)——图像分割与抠图(5)证件照背景替换,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
关键的知识点:
- K-means
- 背景融合-高斯模糊
- 遮罩层生成
算法的流程:
实验步骤:
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; Mat mat_to_samples(Mat& image); int main(int arc, char** argv) { Mat src = imread("F://testImage//input.png"); namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); //组装数据 Mat points = mat_to_samples(src); //运行KMeans int numCluster = 4; Mat labels; Mat centers; TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers); //去背景遮罩生成 Mat mask = Mat::zeros(src.size(), CV_8UC1); int index = src.rows*2 + 2; int cindex = labels.at<int>(index, 0); int height = src.rows; int width = src.cols; Mat dst; src.copyTo(dst); for(int row=0;row<height;row++) { for (int col = 0; col < width; col++) { index = row * width + col; int label = labels.at<int>(index, 0); if (label == cindex)//背景 { dst.at<Vec3b>(row, col)[0] = 0; dst.at<Vec3b>(row, col)[1] = 0; dst.at<Vec3b>(row, col)[2] = 0; mask.at<uchar>(row, col) = 0; } else { mask.at<uchar>(row, col) = 255; } } } imshow("mask", mask); imshow("KMeans-Result", dst); //腐蚀+高斯模糊 waitKey(0); return 0; } Mat mat_to_samples(Mat& image) { int w = image.cols; int h = image.rows; int samplecount = w * h; int dims = image.channels(); Mat points(samplecount, dims, CV_32F, Scalar(10)); int index = 0; for (int row = 0; row < h; row++) { for (int col = 0; col < w; col++) { index = row * w + col; Vec3b bgr = image.at<Vec3b>(row, col); points.at<float>(index, 0) = static_cast<int>(bgr[0]); points.at<float>(index, 1) = static_cast<int>(bgr[1]); points.at<float>(index, 2) = static_cast<int>(bgr[2]); } } return points; }
去背景遮罩生成结果:
完整代码:
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; Mat mat_to_samples(Mat& image); int main(int arc, char** argv) { Mat src = imread("F://testImage//input.png"); namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); //组装数据 Mat points = mat_to_samples(src); //运行KMeans int numCluster = 4; Mat labels; Mat centers; TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers); //去遮罩生成 Mat mask = Mat::zeros(src.size(), CV_8UC1); int index = src.rows*2 + 2; int cindex = labels.at<int>(index, 0); int height = src.rows; int width = src.cols; Mat dst; src.copyTo(dst); for(int row=0;row<height;row++) { for (int col = 0; col < width; col++) { index = row * width + col; int label = labels.at<int>(index, 0); if (label == cindex)//背景 { dst.at<Vec3b>(row, col)[0] = 0; dst.at<Vec3b>(row, col)[1] = 0; dst.at<Vec3b>(row, col)[2] = 0; mask.at<uchar>(row, col) = 0; } else { mask.at<uchar>(row, col) = 255; } } } imshow("mask", mask); imshow("KMeans-Result", dst); //腐蚀+高斯模糊 Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); erode(mask, mask, k); imshow("erode-mask", mask); GaussianBlur(mask, mask, Size(3, 3), 0, 0); imshow("Blur Mask", mask); //通道混合 Vec3b color; //RNG rng(12345); //背景替换为红色 color[0] = 0;//rng.uniform(0, 255); color[1] = 0;//rng.uniform(0, 255); color[2] = 255;//rng.uniform(0, 255); Mat result(src.size(), src.type()); double w = 0.0; int b = 0, g = 0, r = 0; int b1 = 0, g1 = 0, r1 = 0; int b2 = 0, g2 = 0, r2 = 0; for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { int m = mask.at<uchar>(row, col); if (m == 255) { result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);//前景 } else if(m==0) { result.at<Vec3b>(row, col) = color;//背景 } else { w = m / 255.0; b1 = src.at<Vec3b>(row, col)[0]; g1 = src.at<Vec3b>(row, col)[1]; r1 = src.at<Vec3b>(row, col)[2]; b2 = color[0]; g2 = color[1]; r2 = color[2]; b = b1 * w + b2 * (1.0 - w); g = g1 * w + g2 * (1.0 - w); r = r1 * w + r2 * (1.0 - w); result.at<Vec3b>(row, col)[0] = b; result.at<Vec3b>(row, col)[1] = g; result.at<Vec3b>(row, col)[2] = r; } } } imshow("背景替换", result); waitKey(0); return 0; } Mat mat_to_samples(Mat& image) { int w = image.cols; int h = image.rows; int samplecount = w * h; int dims = image.channels(); Mat points(samplecount, dims, CV_32F, Scalar(10)); int index = 0; for (int row = 0; row < h; row++) { for (int col = 0; col < w; col++) { index = row * w + col; Vec3b bgr = image.at<Vec3b>(row, col); points.at<float>(index, 0) = static_cast<int>(bgr[0]); points.at<float>(index, 1) = static_cast<int>(bgr[1]); points.at<float>(index, 2) = static_cast<int>(bgr[2]); } } return points; }
结果如下所示:
这篇关于C++OpenCV系统学习(17)——图像分割与抠图(5)证件照背景替换的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-11国产医疗级心电ECG采集处理模块
- 2025-01-10Rakuten 乐天积分系统从 Cassandra 到 TiDB 的选型与实战
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南