Pyecharts
2021/9/22 23:17:48
本文主要是介绍Pyecharts,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Pyecharts
绘制一个柱状图
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Bar # 实例化 bar = Bar() # x,y 内添加的必须是list, list类型必须是python基础类型 bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"]) bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105]) bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49]) bar.set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况")) bar.render('this is a test html.html')
堆叠柱状图
- 切换皮肤
- 旋转轴标签
- stack堆叠
- 添加mark点, line辅助线
- x轴y轴交换
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.globals import ThemeType # 主题颜色 from pyecharts.charts import Bar # 实例化 # 改变皮肤, 尺寸 bar = Bar(init_opts=opts.InitOpts( theme=ThemeType.DARK, width='800px', height="600px")) # x,y 内添加的必须是list, list内数据类型必须是python基础类型, 如果是numpy数组需要转成list bar.add_xaxis(Faker.choose()) # 堆叠柱状图 stack='stack1'表示堆叠在stack1这一组里面 bar.add_yaxis('商家A',Faker.values(),stack='stack1') bar.add_yaxis('商家B',Faker.values(),stack='stack1') bar.add_yaxis('商家C',Faker.values(),stack='stack2') bar.add_yaxis('商家D',Faker.values(),stack='stack2') # 添加标题 副标题 bar.set_global_opts(title_opts=opts.TitleOpts(title="Bar_基本示例",subtitle="我是副标题"), # 旋转x轴角度 xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=30))) # 添加最大,最小点, 平均线 bar.set_series_opts( label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_='max',name="最大值"), opts.MarkPointItem(type_='min',name="最小值"), ] ), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="average",name="平均值"), ] ) ) # x,y轴交换 bar.reversal_axis() bar.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
窗口滑块
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.globals import ThemeType # 主题颜色 from pyecharts.charts import Bar # 实例化 # 改变皮肤, 尺寸 bar = Bar(init_opts=opts.InitOpts( theme=ThemeType.DARK, width='800px', height="600px")) bar.add_xaxis(Faker.days_attrs) bar.add_yaxis("商家A",Faker.days_values) bar.set_global_opts( title_opts=opts.TitleOpts( title="Bar_基本示例", subtitle="我是副标题"), # 添加窗口滑块效果 datazoom_opts=[opts.DataZoomOpts()] ) bar.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
3D柱状图
import random from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Bar3D # 实例化 bar3d = Bar3D() # 需要三维的数据 , data = [(i,j,random.randint(0,12)) for i in range(24) for j in range(6)] bar3d.add( "", data, xaxis3d_opts=opts.Axis3DOpts(Faker.clock,type_='category'), yaxis3d_opts=opts.Axis3DOpts(Faker.week_en,type_='category'), zaxis3d_opts=opts.Axis3DOpts(type_='value'), ) bar3d.set_global_opts( visualmap_opts=opts.VisualMapOpts(max_=20), title_opts=opts.TitleOpts(title="Bar3D_基本示例") ) bar3d.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
折线 / 面积图
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Line # 实例化 line = Line() line.add_xaxis(Faker.choose()) # is_smooth 折现变平滑 line.add_yaxis("商家A",Faker.values(), is_smooth=True, areastyle_opts=opts.AreaStyleOpts( # opacity 透明度 opacity=0.2, # color 填充区域颜色 color='#000' )) line.add_yaxis("商家B",Faker.values()) line.set_global_opts(title_opts=opts.TitleOpts(title='Line_基本示例')) line.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
饼图
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Pie # 实例化 pie = Pie() # radius 内环和外环半径, 列表类型 # rosetype 玫瑰饼图 # resetype = 'area' , 所有扇区圆心角相同, 仅通过半径展现圆心角大小 # = 'radius' , 圆心角展现百分比 , pie.add("",[list(z) for z in zip(Faker.choose(),Faker.values())], radius=["40%","75%"], rosetype='radius') pie.set_global_opts(title_opts=opts.TitleOpts(title='Pie_基本示例')) pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c}')) pie.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
涟漪效果散点图
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import EffectScatter # 实例化 from pyecharts.globals import SymbolType effect_scatter = EffectScatter() effect_scatter.add_xaxis(Faker.choose()) effect_scatter.add_yaxis("", Faker.values(), symbol=SymbolType.ARROW) effect_scatter.set_global_opts(title_opts=opts.TitleOpts(title="EffectScatter_基本示例")) effect_scatter.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
漏斗图
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Funnel # 实例化 funnel = Funnel() funnel.add( "用户转化率", [list(z) for z in zip(Faker.choose(),Faker.values())], # position = 'inside' 图例名放在图形中间 label_opts=opts.LabelOpts(position='inside') ) funnel.set_global_opts(title_opts=opts.TitleOpts(title="Funnel_基本示例")) funnel.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
地理坐标系
from pyecharts.faker import Faker # 数据集 from pyecharts import options as opts # 配置 from pyecharts.charts import Geo # 实例化 geo = Geo() geo.add_schema(maptype="china") geo.add('geo',[list(z) for z in zip(Faker.provinces,Faker.values())], type_='heatmap') geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) geo.set_global_opts( visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Geo_基本示例") ) geo.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
水球图
from pyecharts import options as opts # 配置 from pyecharts.charts import Liquid # 实例化 liquid = Liquid() liquid.add('Liquid',[0.7,0.6,0.5]) liquid.set_global_opts(title_opts=opts.TitleOpts(title="Liquid_基本示例")) liquid.render(R'F:\1000篇技术博客\pyecharts\chart1.html')
雷达图
词云图
这篇关于Pyecharts的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-12深入理解 ECMAScript 2024 新特性:Map.groupBy() 分组操作
- 2025-01-11国产医疗级心电ECG采集处理模块
- 2025-01-10Rakuten 乐天积分系统从 Cassandra 到 TiDB 的选型与实战
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势