【BP预测】基于Logistic混沌映射改进的原子搜索算法优化BP神经网络实现数据预测matlab源码
2021/9/24 1:41:03
本文主要是介绍【BP预测】基于Logistic混沌映射改进的原子搜索算法优化BP神经网络实现数据预测matlab源码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1 BP神经网络预测算法简介
1.1 神经网络的结构
神经网络的网络结构由输入层,隐含层,输出层组成。隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层。下面是一个三层的神经网络,包含了两层隐含层,一个输出层。其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1;输入层为样本的两个特征X1,X2.
图1 三层神经网络
在神经网络中每一个节点的都与上一层的所有节点相连,称为全连接。神经网络的上一层输出的数据是下一层的输入数据。在图中的神经网络中,原始的输入数据,通过第一层隐含层的计算得出的输出数据,会传到第二层隐含层。而第二层的输出,又会作为输出层的输入数据。
神经网络中的每一层(除了输入层)都是由神经元组成,也称为节点。每一个神经元都相当于一个感知器。如下图:
图2 单个神经元
在神经网络中,每个节点都将计算出特征矩阵X与权值矩阵的加权和,得到净输入e,然后通过激励函数f(e)得到该节点的输出y。在图1中,每条连线都可以看做是一个权值。
在神经网络中,可以添加输出层节点的个数来解决多分类问题。有四个类别需要分类则,则输出层的节点个数可以设为4个节点,每一个节点代表一个类别。
1.2 BP神经网络的训练过程
神经网络的训练过程分为两个过程:1、向前传播得到预测数据;2、反向传播更新权重。如下图所示:
图3 神经网络的训练过程
第一步、向前传播得到预测数据:向前传播的过程,即数据从输入层输入,经过隐含层,输出层的计算得到预测值,预测值为输出层的输出结果。网络层的输出即,该层中所有节点(神经元)的输出值的集合。我们以图一的神经网络结构为例,分析向前传播过程。
1.得到隐含层的输出y1,y2,y3:
2.获取到第二层的隐含层输出y4,y5,输入的数据也就是第一层隐含层的输出数据y1,y2,y3。
3、通过输出层,得到最后的预测值y。
第二步、反向传播更新权重:根据样本的真实类标,计算模型预测的结果与真实类标的误差。然后将该误差反向传播到各个隐含层。计算出各层的误差,再根据各层的误差,更新权重。
1.计算输出层的误差:其中z为该样本的类标
2计算第二层隐含层的误差
3.计算第一次隐含层的误差:
4、更新权重:新的权值=原权值+学习速率×该节点的误差×激励函数的导函数的值(f(e)的倒数)×与该节点相连的输入值
4.1更新输入层与第一层隐含层之间的权值:
4.2更新第一层隐含层与第二层隐含层之间的权值
4.3更新第二层隐含层与输出层之间的权值
以上就是反向传播的过程。误差从输出层反向的传到输入层,然后再从输入层向前更新权值。
1.3 BP神经网络的设计与实现
(一) BP神经网络的设计
1.设计网络的结构:
本次实验采用java语言实现。设计了包含一个隐含层的神经网络,即一个2层的神经网络。
每层都含有一个一维X特征矩阵即为输入数据,一个二维W权值矩阵,一个一维的误差矩阵error,同时该神经网络中还包含了一个一维的目标矩阵target,记录样本的真实类标。
X特征矩阵:第一层隐含层的X矩阵的长度为输入层输入数据的特征个数+1,隐含层的X矩阵的长度则是上一层的节点的个数+1,X[0]=1。
W权值矩阵:第一维的长度设计为节点(即神经元)的个数,第二维的长度设计为上一层节点的个数+1;W[0][0]为该节点的偏置量
error误差矩阵:数组长度设计为该层的节点个数。
目标矩阵target:输出层的节点个数与其一致。
激活函数:采用sigmoid函数:1/1+e-x
2.神经网络的计算过程
按照以上的设计,向前传播得到下一层的输出结果,如图所示:
求误差过程,如图所示:
反向传播过程,调整权值,如图所示:
(二) BP神经网络的实现
一、向前传播得到预测数据:
1.初始化权值
2.训练数据集:
2.1、导入训练数据集和目标值;
2.2、向前传播得到输出值;
2.2.1、获取隐含层的输出
2.2.2、获取输出层的输出
二、反向传播更新权重
1、获取输出层的误差;
2、获取隐含层的误差;
3、更新隐含层的权值;
4、更新输出层的权值;
2 原子搜索算法
原子搜索优化算法(Atom Search Optimization)是于2019提出的一种基于分子动力学模型的新颖智能算法.模拟在原子构成的分子系统中,原子因相互间的作用力和系统约束力而产生位移的现象.在一个分子系统中,相邻的原子间存在相互作用力(吸引力和排斥力),且全局最优原子对其他原子存在几何约束作用 .引力促使原子广泛地探索整个搜索空间,斥力使它们能够有效地开发潜在区域 。具有寻优能力强,收敛快的特点。
1.原子优化算法原理
3 ASO优化BP神经网络的步骤
Step1:初始化BP神经网络的权值和阈值
Step2:计Logistic混沌映射改进的原子搜索优化算法的决策变量长度,选取均方误差作为优化的目标函数。
Step3:设置算法停止准则,使用遗传优化算法优化神经网络的权值和阈值参数。
Step4:将优化得到的权值和阈值参数赋给BP神经网络。
Step5:优化后的BP神经网络训练与测试,与优化前的BP神经网络进行误差分析和精度对比。
4 演示代码
%-------------------------------------------------------------------------- % Atom Search Optimization. function [X_Best,Fit_XBest,Functon_Best]=ASO(alpha,beta,Fun_Index,Atom_Num,Max_Iteration) % Dim: Dimension of search space. % Atom_Pop: Population (position) of atoms. % Atom_V: Velocity of atoms. % Acc: Acceleration of atoms. % M: Mass of atoms. % Atom_Num: Number of atom population. % Fitness: Fitness of atoms. % Max_Iteration: Maximum of iterations. % X_Best: Best solution (position) found so far. % Fit_XBest: Best result corresponding to X_Best. % Functon_Best: The fitness over iterations. % Low: The low bound of search space. % Up: The up bound of search space. % alpha: Depth weight. % beta: Multiplier weight alpha=50; beta=0.2; Iteration=1; [Low,Up,Dim]=Test_Functions_Range(Fun_Index); % Randomly initialize positions and velocities of atoms. if size(Up,2)==1 Atom_Pop=rand(Atom_Num,Dim).*(Up-Low)+Low; Atom_V=rand(Atom_Num,Dim).*(Up-Low)+Low; end if size(Up,2)>1 for i=1:Dim Atom_Pop(:,i)=rand(Atom_Num,1).*(Up(i)-Low(i))+Low(i); Atom_V(:,i)=rand(Atom_Num,1).*(Up(i)-Low(i))+Low(i); end end % Compute function fitness of atoms. for i=1:Atom_Num Fitness(i)=Test_Functions(Atom_Pop(i,:),Fun_Index,Dim); end Functon_Best=zeros(Max_Iteration,1); [Max_Fitness,Index]=min(Fitness); Functon_Best(1)=Fitness(Index); X_Best=Atom_Pop(Index,:); % Calculate acceleration. Atom_Acc=Acceleration(Atom_Pop,Fitness,Iteration,Max_Iteration,Dim,Atom_Num,X_Best,alpha,beta); % Iteration for Iteration=2:Max_Iteration Functon_Best(Iteration)=Functon_Best(Iteration-1); Atom_V=rand(Atom_Num,Dim).*Atom_V+Atom_Acc; Atom_Pop=Atom_Pop+Atom_V; for i=1:Atom_Num % Relocate atom out of range. TU= Atom_Pop(i,:)>Up; TL= Atom_Pop(i,:)<Low; Atom_Pop(i,:)=(Atom_Pop(i,:).*(~(TU+TL)))+((rand(1,Dim).*(Up-Low)+Low).*(TU+TL)); %evaluate atom. Fitness(i)=Test_Functions(Atom_Pop(i,:),Fun_Index,Dim); end [Max_Fitness,Index]=min(Fitness); if Max_Fitness<Functon_Best(Iteration) Functon_Best(Iteration)=Max_Fitness; X_Best=Atom_Pop(Index,:); else r=fix(rand*Atom_Num)+1; Atom_Pop(r,:)=X_Best; end % Calculate acceleration. Atom_Acc=Acceleration(Atom_Pop,Fitness,Iteration,Max_Iteration,Dim,Atom_Num,X_Best,alpha,beta); end Fit_XBest=Functon_Best(Iteration);
5 仿真结果
6 参考文献
《基于BP神经网络的宁夏水资源需求量预测》
这篇关于【BP预测】基于Logistic混沌映射改进的原子搜索算法优化BP神经网络实现数据预测matlab源码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-12深入理解 ECMAScript 2024 新特性:Map.groupBy() 分组操作
- 2025-01-11国产医疗级心电ECG采集处理模块
- 2025-01-10Rakuten 乐天积分系统从 Cassandra 到 TiDB 的选型与实战
- 2025-01-09CMS内容管理系统是什么?如何选择适合你的平台?
- 2025-01-08CCPM如何缩短项目周期并降低风险?
- 2025-01-08Omnivore 替代品 Readeck 安装与使用教程
- 2025-01-07Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
- 2025-01-06PingCAP 连续两年入选 Gartner 云数据库管理系统魔力象限“荣誉提及”
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势