浅析Java中不使用的对象应赋值为null的深层理解:JVM中局部变量表(运行时候的栈状态)和slot(运行时栈里的索引)的理解、Java的栈优化(重用栈索引节约内存空间)、GC的可达性分析算法-如何
2021/9/24 7:12:54
本文主要是介绍浅析Java中不使用的对象应赋值为null的深层理解:JVM中局部变量表(运行时候的栈状态)和slot(运行时栈里的索引)的理解、Java的栈优化(重用栈索引节约内存空间)、GC的可达性分析算法-如何,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
经常听说“不使用的对象应手动赋值为null”,但是要问原因,大都回答“有利于GC更早回收内存,减少内存占用”,但再往深入问就回答不出来了。所以这里做一点深入研究。
一、问题背景
我们来看一段非常简单的代码:
public static void main(String[] args) { if (true) { byte[] placeHolder = new byte[64 * 1024 * 1024]; System.out.println(placeHolder.length / 1024); } System.gc(); }
我们在 if 中实例化了一个数组 placeHolder,然后在 if 的作用域外通过 System.gc(); 手动触发了GC,其用意是回收 placeHolder,因为placeHolder已经无法访问到了。来看看输出:
65536 [GC 68239K->65952K(125952K), 0.0014820 secs] [Full GC 65952K->65881K(125952K), 0.0093860 secs]
Full GC 65952K->65881K(125952K) 代表的意思是:本次GC后,内存占用从65952K降到了65881K。意思其实是说GC没有将placeHolder回收掉,是不是不可思议?下面来看看遵循“不使用的对象应手动赋值为null“的情况:
public static void main(String[] args) { if (true) { byte[] placeHolder = new byte[64 * 1024 * 1024]; System.out.println(placeHolder.length / 1024); placeHolder = null; } System.gc(); }
// 其输出为: 65536 [GC 68239K->65952K(125952K), 0.0014910 secs] [Full GC 65952K->345K(125952K), 0.0099610 secs]
这次GC后内存占用下降到了345K,即placeHolder被成功回收了!对比两段代码,仅仅将placeHolder赋值为null就解决了GC的问题,为什么 placeHolder 不赋值为null,GC 就“发现不了” placeHolder 该回收呢?这才是问题的关键所在。
二、运行时栈
1、典型的运行时栈
如果你了解过编译原理,或者程序执行的底层机制,你会知道方法在执行的时候,方法里的变量(局部变量)都是分配在栈上的;当然,对于Java来说,new出来的对象是在堆中,但栈中也会有这个对象的指针,和int一样。
public static void main(String[] args) { int a = 1; int b = 2; int c = a + b; }
其运行时栈的状态可以理解成:“索引”表示变量在栈中的序号,根据方法内代码执行的先后顺序,变量被按顺序放在栈中。
索引 | 变量 |
---|---|
1 | a |
2 | b |
3 | c |
再比如:
public static void main(String[] args) { if (true) { int a = 1; int b = 2; int c = a + b; } int d = 4; }
这时运行时栈就是:
索引 | 变量 |
---|---|
1 | a |
2 | b |
3 | c |
4 | d |
容易理解吧?其实仔细想想上面这个例子的运行时栈是有优化空间的。
2、Java的栈优化
上面的例子,main()方法运行时占用了4个栈索引空间,但实际上不需要占用这么多。当if执行完后,变量a、b和c都不可能再访问到了,所以它们占用的1~3的栈索引是可以“回收”掉的,比如像这样:
索引 | 变量 |
---|---|
1 | a |
2 | b |
3 | c |
1 | d |
变量d重用了变量a的栈索引,这样就节约了内存空间。
上面的“运行时栈”和“索引”是为方便引入而故意发明的词,实际上在JVM中,它们的名字分别叫做“局部变量表”和“Slot”。而且局部变量表在编译时即已确定,不需要等到“运行时”。
3、如何确定对象可以被 GC 回收
这里来简单讲讲主流GC里非常简单的一小块,另一种表达是,如何确定对象是存活的。仔细想想,Java的世界中,对象与对象之间是存在关联的,我们可以从一个对象访问到另一个对象。如图所示。
再仔细想想,这些对象与对象之间构成的引用关系,就像是一张大大的图;更清楚一点,是众多的树。
如果我们找到了所有的树根,那么从树根走下去就能找到所有存活的对象,那么那些没有找到的对象,就是已经死亡的了!这样GC就可以把那些对象回收掉了。
现在的问题是,怎么找到树根呢?JVM早有规定,其中一个就是:栈中引用的对象。也就是说,只要堆中的这个对象,在栈中还存在引用,就会被认定是存活的。
这就是:确定对象可以被回收的算法,其名字是“可达性分析算法”。
三、JVM的“bug”
我们再来回头看看最开始没有设置为 null 的例子,看看其运行时栈:
LocalVariableTable: Start Length Slot Name Signature 0 21 0 args [Ljava/lang/String; 5 12 1 placeHolder [B
栈中第一个索引是方法传入参数args,其类型为String[];第二个索引是placeHolder,其类型为byte[]。
联系前面的内容,我们推断placeHolder没有被回收的原因:System.gc();触发GC时,main()方法的运行时栈中,还存在有对args和placeHolder的引用,GC判断这两个对象都是存活的,不进行回收。也就是说,代码在离开 if 后,虽然已经离开了placeHolder 的作用域,但在此之后,没有任何对运行时栈的读写,placeHolder所在的索引还没有被其他变量重用,所以GC判断其为存活。
为了验证这一推断,我们在System.gc();之前再声明一个变量,按照之前提到的“Java的栈优化”,这个变量会重用 placeHolder 的索引。
public static void main(String[] args) { if (true) { byte[] placeHolder = new byte[64 * 1024 * 1024]; System.out.println(placeHolder.length / 1024); } int replacer = 1; System.gc(); }
// 看看其运行时栈: LocalVariableTable: Start Length Slot Name Signature 0 23 0 args [Ljava/lang/String; 5 12 1 placeHolder [B 19 4 1 replacer I
不出所料,replacer重用了placeHolder的索引。来看看GC情况:
65536 [GC 68239K->65984K(125952K), 0.0011620 secs] [Full GC 65984K->345K(125952K), 0.0095220 secs]
placeHolder 被成功回收了!我们的推断也被验证了。
再从运行时栈来看,加上 nt replacer = 1; 和将 placeHolder 赋值为 null 起到了同样的作用:断开堆中 placeHolder 和栈的联系,让GC判断placeHolder已经死亡。
现在算是理清了“不使用的对象应手动赋值为null“的原理了,一切根源都是来自于JVM的一个“bug”:代码离开变量作用域时,并不会自动切断其与堆的联系。
需要对局部变量表的重写才会重用 slot,这样才会端开 栈 中的引用与 堆 的联系。为什么这个“bug”一直存在?你不觉得出现这种情况的概率太小了么?算是一个tradeoff(权衡)了。
看到这里你已经明白了“不使用的对象应手动赋值为null“这句话背后的奥义,正如《深入理解Java虚拟机》作者的观点:在需要“不使用的对象应手动赋值为null”的时大胆去用,但不应当对其有过多依赖,更不能当作是一个普遍规则来推广。
这篇关于浅析Java中不使用的对象应赋值为null的深层理解:JVM中局部变量表(运行时候的栈状态)和slot(运行时栈里的索引)的理解、Java的栈优化(重用栈索引节约内存空间)、GC的可达性分析算法-如何的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南