实验三:OpenFlow协议分析实践
2021/9/26 23:15:07
本文主要是介绍实验三:OpenFlow协议分析实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
一、实验目的
- 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
- 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。
二、实验环境
- 下载虚拟机软件Oracle VisualBox;
- 在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;
三、实验要求
(一)基本要求
- 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。
主机 | IP地址 |
---|---|
h1 | 192.168.0.101/24 |
h2 | 192.168.0.102/24 |
h3 | 192.168.0.103/24 |
h4 | 192.168.0.104/24 |
- 修改主机IP地址和 控制器IP:
-
保存拓扑文件
-
首先打开一个终端输入
sudo wireshark
打开wires hark,选择any
进行抓包,然后打开另一个终端打开保存的拓扑文件。
-
查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程
-
OFPT_HELLO控制器6633端口 ---> 交换机38216端口,从控制器到交换机
-
OFTP_HELLO 交换机38216端口---> 控制器6633端口
双方建立连接,并使用OPenflow 1.0 -
OFTP_FEATRUES_REQUEST控制器6633端口 ---> 交换机38216端口,从控制器到交换机。控制器请求交换器的特征信息
-
OFTP_SET_CONFIG控制器6633端口 ---> 交换机38216端口。控制器要求交换机按照所给出的信息进行配置
-
OFTP_PORT_STATUS当交换机端口发生变化时,告知控制器相应的端口状态。
-
OFTP_FEATURES_REPLY交换机38216端口---> 控制器6633端口。交换机告知控制器它的特征信息
-
OFTP_PACKET_IN交换机38216端口(有数据包进来,请指示)--- 控制器6633端口
-
OFTP_FLOW_MOD分析抓取的flow_mod数据包,控制器通过6633端口向交换机38216端口、交换机38216端下发流表项,指导数据的转发处理
-
OFTP_PACKET_OUT控制器6633端口 ---> 交换机38216端口
-
回答:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
采用的是TCP协议 -
流程图
二、进阶要求
- 将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。相关数据结构可在openflow安装目录openflow/include/openflow当中的openflow.h头文件中查询到。
- HELLO
/* Header on all OpenFlow packets. */ struct ofp_header { uint8_t version; /* OFP_VERSION. */ uint8_t type; /* One of the OFPT_ constants. */ uint16_t length; /* Length including this ofp_header. */ uint32_t xid; /* Transaction id associated with this packet. Replies use the same id as was in the request to facilitate pairing. */ };
- FEATURES_REQUEST
与HELLO的代码段一致
3. SET_CONFIG
/* Switch configuration. */ struct ofp_switch_config { struct ofp_header header; uint16_t flags; /* OFPC_* flags. */ uint16_t miss_send_len; /* Max bytes of new flow that datapath should send to the controller. */ };
- PORT_STATUS
/* A physical port has changed in the datapath */ struct ofp_port_status { struct ofp_header header; uint8_t reason; /* One of OFPPR_*. */ uint8_t pad[7]; /* Align to 64-bits. */ struct ofp_phy_port desc; };
- FEATURES_REPLAY
/* Description of a physical port */ struct ofp_phy_port { uint16_t port_no; uint8_t hw_addr[OFP_ETH_ALEN]; char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */ uint32_t config; /* Bitmap of OFPPC_* flags. */ uint32_t state; /* Bitmap of OFPPS_* flags. */ /* Bitmaps of OFPPF_* that describe features. All bits zeroed if * unsupported or unavailable. */ uint32_t curr; /* Current features. */ uint32_t advertised; /* Features being advertised by the port. */ uint32_t supported; /* Features supported by the port. */ uint32_t peer; /* Features advertised by peer. */ }; /* Switch features. */ struct ofp_switch_features { struct ofp_header header; uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for a MAC address, while the upper 16-bits are implementer-defined. */ uint32_t n_buffers; /* Max packets buffered at once. */ uint8_t n_tables; /* Number of tables supported by datapath. */ uint8_t pad[3]; /* Align to 64-bits. */ /* Features. */ uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */ uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */ /* Port info.*/ struct ofp_phy_port ports[0]; /* Port definitions. The number of ports is inferred from the length field in the header. */ };
- PACKET_IN
/* Packet received on port (datapath -> controller). */ struct ofp_packet_in { struct ofp_header header; uint32_t buffer_id; /* ID assigned by datapath. */ uint16_t total_len; /* Full length of frame. */ uint16_t in_port; /* Port on which frame was received. */ uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */ uint8_t pad; uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word, so the IP header is 32-bit aligned. The amount of data is inferred from the length field in the header. Because of padding, offsetof(struct ofp_packet_in, data) == sizeof(struct ofp_packet_in) - 2. */ };
- PACKET_OUT
/* Send packet (controller -> datapath). */ struct ofp_packet_out { struct ofp_header header; uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */ uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */ uint16_t actions_len; /* Size of action array in bytes. */ struct ofp_action_header actions[0]; /* Actions. */ /* uint8_t data[0]; */ /* Packet data. The length is inferred from the length field in the header. (Only meaningful if buffer_id == -1.) */ };
- FLOW_MOD
/* Flow setup and teardown (controller -> datapath). */ struct ofp_flow_mod { struct ofp_header header; struct ofp_match match; /* Fields to match */ uint64_t cookie; /* Opaque controller-issued identifier. */ /* Flow actions. */ uint16_t command; /* One of OFPFC_*. */ uint16_t idle_timeout; /* Idle time before discarding (seconds). */ uint16_t hard_timeout; /* Max time before discarding (seconds). */ uint16_t priority; /* Priority level of flow entry. */ uint32_t buffer_id; /* Buffered packet to apply to (or -1). Not meaningful for OFPFC_DELETE*. */ uint16_t out_port; /* For OFPFC_DELETE* commands, require matching entries to include this as an output port. A value of OFPP_NONE indicates no restriction. */ uint16_t flags; /* One of OFPFF_*. */ struct ofp_action_header actions[0]; /* The action length is inferred from the length field in the header. */ };
实验总结
- 遇到的问题:在实验过程遇到的问题是,在实验过程中没抓到OPEN_FLOW的包,连续试了几次都没有这个包,后来在网上查阅了相关的资料,在运行完成保存的拓扑文件之后还需要进行一次ping操作,这样wireshark 才能抓到openflow的包。
- 实验感想:这次实验难度适中,在整个过程中还算是比较流畅,但是我在实验的过程中连续抓了好几次包,实验过程截图并不是在一个包里面截图的,导致在实验报告里面出现了许多不同的端口号,实验报告是以我的第一包为准即端口号38216;我的实验是分两次做的,进阶要求部分吸取了第一次实验的教训,一次操作就完成了,截图也是在抓到的同一个包里面截图的即端口号38832;最后在openlow的源码里面找到相应部分的源码花费了较多的时间,整个实验做下来还算流畅。
这篇关于实验三:OpenFlow协议分析实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南