pytorch_预训练Se_resnet50_自定义类别数量_源码分享
2021/9/27 20:40:49
本文主要是介绍pytorch_预训练Se_resnet50_自定义类别数量_源码分享,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
系列文章目录
Imagenet的预训练Se_resnet50是1000个类别,根据笔者的经验,预训练的网络结构是不能更改的,改了效果就不行,只能在末尾增加一个(1000,classes)的全连接层,中间还有一层dropout,这样效果是最好的。
源码
注意:最好的网络结构在下面被命名为了fb_se_resnet50,直接调用这个函数即可。
""" ResNet code gently borrowed from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py """ from __future__ import print_function, division, absolute_import from abc import ABC from collections import OrderedDict import math import torch import torch.nn as nn from torch.utils import model_zoo __all__ = ['SENet', 'fb_SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152', 'fb_se_resnet101', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'fb_se_resnet50', 'fb_se_resnext50_32x4d', 'at_se_resnet50'] pretrained_settings = { 'senet154': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet50': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet101': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet152': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnext50_32x4d': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnext101_32x4d': { True: { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, } class SEModule(nn.Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.avg_pool(x) # debug = 1 avg_out = self.fc2(self.relu1(self.fc1(x))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class BasicBlock(nn.Module): expansion = 1 __constants__ = ['downsample'] def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """ Base class for bottlenecks that implements `forward()` method. """ def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out = self.se_module(out) + residual out = self.relu(out) return out class Def_Bottleneck(nn.Module): expansion = 4 __constants__ = ['downsample'] def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class SEBottleneck(Bottleneck): """ Bottleneck for SENet154. """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): super(SEBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes * 2) self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(planes * 4) self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SEResNetBottleneck(Bottleneck): """ ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe implementation and uses `stride=stride` in `conv1` and not in `conv2` (the latter is used in the torchvision implementation of ResNet). """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): super(SEResNetBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SEResNeXtBottleneck(Bottleneck): """ ResNeXt bottleneck type C with a Squeeze-and-Excitation module. """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): super(SEResNeXtBottleneck, self).__init__() width = math.floor(planes * (base_width / 64)) * groups self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) self.bn1 = nn.BatchNorm2d(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(width) self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SENet(nn.Module): def __init__(self, block, layers, groups, reduction, dropout_p=0.5, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000, zero_init_residual=False): """ Parameters ---------- block (nn.Module): Bottleneck class. - For SENet154: SEBottleneck - For SE-ResNet models: SEResNetBottleneck - For SE-ResNeXt models: SEResNeXtBottleneck layers (list of ints): Number of residual blocks for 4 layers of the network (layer1...layer4). groups (int): Number of groups for the 3x3 convolution in each bottleneck block. - For SENet154: 64 - For SE-ResNet models: 1 - For SE-ResNeXt models: 32 reduction (int): Reduction ratio for Squeeze-and-Excitation modules. - For all models: 16 dropout_p (float or None): Drop probability for the Dropout layer. If `None` the Dropout layer is not used. - For SENet154: 0.2 - For SE-ResNet models: None - For SE-ResNeXt models: None inplanes (int): Number of input channels for layer1. - For SENet154: 128 - For SE-ResNet models: 64 - For SE-ResNeXt models: 64 input_3x3 (bool): If `True`, use three 3x3 convolutions instead of a single 7x7 convolution in layer0. - For SENet154: True - For SE-ResNet models: False - For SE-ResNeXt models: False downsample_kernel_size (int): Kernel size for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 3 - For SE-ResNet models: 1 - For SE-ResNeXt models: 1 downsample_padding (int): Padding for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 1 - For SE-ResNet models: 0 - For SE-ResNeXt models: 0 num_classes (int): Number of outputs in `last_linear` layer. - For all models: 1000 """ super(SENet, self).__init__() self.inplanes = inplanes if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer( block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0 ) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.avg_pool = nn.AvgPool2d(7, stride=1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, 1000) self.bottleneck = nn.Sequential( nn.Linear(1000, 1000), nn.BatchNorm1d(1000), nn.ReLU(), nn.Dropout(0.5) ) self.bottleneck[0].weight.data.normal_(0, 0.005) self.bottleneck[0].bias.data.fill_(0.1) self.head = nn.Sequential( nn.Linear(1000, 4), # nn.ReLU(), # nn.Dropout(0.5), # nn.Linear(512, 4) ) # self.fc = nn.Linear(512, num_classes) for dep in range(1): self.head[dep * 1].weight.data.normal_(0, 0.01) self.head[dep * 1].bias.data.fill_(0.0) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, Def_Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers) def features(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def logits(self, x): x = self.avg_pool(x) if self.dropout is not None: x = self.dropout(x) x = x.view(x.size(0), -1) x = self.last_linear(x) x = self.bottleneck(x) x = self.head(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x class fb_SENet(nn.Module): def __init__(self, block, layers, groups, reduction, dropout_p=0.2, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000): super(fb_SENet, self).__init__() self.inplanes = inplanes if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer( block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0 ) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.avg_pool = nn.AvgPool2d(7, stride=1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, 1000) self.last_linear2 = nn.Linear(1000, 4) self.last_linear2.weight.data.normal_(0, 0.01) self.last_linear2.bias.data.fill_(0.0) def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers) def features(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def logits(self, x): x = self.avg_pool(x) x = self.dropout(x) x = x.view(x.size(0), -1) x = self.last_linear(x) # feature = x # x = self.relu(x) x = self.dropout(x) x = self.last_linear2(x) # x = self.dropout(x) # x = self.last_linear3(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x class Attention_SENet(nn.Module): def __init__(self, block, layers, groups, reduction, dropout_p=0.2, inplanes=128, inplanes2=64, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000, norm_layer=None, ): super(Attention_SENet, self).__init__() self.inplanes = inplanes self.inplanes2 = inplanes2 if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer( block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0 ) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.conv1 = nn.Conv2d(3, self.inplanes2, kernel_size=7, stride=2, padding=3, bias=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.bn1 = norm_layer(self.inplanes2) self.relu = nn.ReLU(inplace=True) # 网络的第一层加入注意力机制 self.ca = ChannelAttention(self.inplanes2) self.sa = SpatialAttention() # 网络的卷积层的最后一层加入注意力机制 self.ca1 = ChannelAttention(2048) self.sa1 = SpatialAttention() self.avg_pool = nn.AvgPool2d(7, stride=1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, 1000) self.relu = nn.ReLU() self.last_linear2 = nn.Linear(1000, 4) self.last_linear2.weight.data.normal_(0, 0.01) self.last_linear2.bias.data.fill_(0.0) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers) def features(self, x): x = self.layer0(x) x = self.ca(x) * x # x = self.sa1(x) * x x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def logits(self, x): x = self.ca1(x) * x # x = self.sa1(x) * x x = self.avg_pool(x) x = self.dropout(x) x = x.view(x.size(0), -1) x = self.last_linear(x) x = self.dropout(x) x = self.last_linear2(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x def initialize_pretrained_model(model, num_classes, settings): # assert num_classes == settings['num_classes'], \ # 'num_classes should be {}, but is {}'.format( # settings['num_classes'], num_classes) model.load_state_dict(model_zoo.load_url(settings['url']), strict=False) model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std'] def senet154(num_classes=1000, pretrained='imagenet'): model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, dropout_p=0.2, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['senet154'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet50(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def fb_se_resnet50(num_classes=1000, pretrained='imagenet'): model = fb_SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=0.5, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def at_se_resnet50(num_classes=1000, pretrained='imagenet'): model = Attention_SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=0.5, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes, norm_layer=None) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet101(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet101'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def fb_se_resnet101(num_classes=1000, pretrained='imagenet'): model = fb_SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16, dropout_p=0.5, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet101'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet152(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet152'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def fb_se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'): model = fb_SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, dropout_p=0.5, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext50_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext50_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnext101_32x4d(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext101_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model
这篇关于pytorch_预训练Se_resnet50_自定义类别数量_源码分享的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23增量更新怎么做?-icode9专业技术文章分享
- 2024-11-23压缩包加密方案有哪些?-icode9专业技术文章分享
- 2024-11-23用shell怎么写一个开机时自动同步远程仓库的代码?-icode9专业技术文章分享
- 2024-11-23webman可以同步自己的仓库吗?-icode9专业技术文章分享
- 2024-11-23在 Webman 中怎么判断是否有某命令进程正在运行?-icode9专业技术文章分享
- 2024-11-23如何重置new Swiper?-icode9专业技术文章分享
- 2024-11-23oss直传有什么好处?-icode9专业技术文章分享
- 2024-11-23如何将oss直传封装成一个组件在其他页面调用时都可以使用?-icode9专业技术文章分享
- 2024-11-23怎么使用laravel 11在代码里获取路由列表?-icode9专业技术文章分享
- 2024-11-22怎么实现ansible playbook 备份代码中命名包含时间戳功能?-icode9专业技术文章分享