RSA
2021/10/2 6:13:02
本文主要是介绍RSA,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
参考:https://blog.csdn.net/huanghelouzi/article/details/82943615
公共模数攻击
给定两组密文和公钥和n
c1 = pow(m, e1, N)
c2 = pow(m, e2, N)
因为e1e2互质,所以可知若有xy满足pow(x,e1)+pow(y,e2)=1,则pow(pow(c1,-1),-x) * pow(c2,y) = p mod(n)
若p<n则可以直接计算。
小指数e攻击
e取很小且多个模数gcd!=1的时候容易求出pq
选择密文攻击
多个模数的情况
已知:加密算法、截获的部分密文、自己选择的密文消息以及相应的被解密的明文
如果两次加密的n1和n2具有相同的素因子,可以利用欧几里德算法直接分解n1和n2。通过欧几里德算法计算出两个n的最大公约数p
yafu、Pollard rho、Fermat
玄学黑箱
低加密指数广播攻击
如果选取的加密指数e比较低,并且使用了相同的加密指数e给若干个接收者发送相同的信息,可以利用低加密指数广播攻击得到明文。
选取相同的加密指数e(例如e=3),对相同的明文m进行了加密并进行了消息的发送。
e=3时,中国剩余定理可得c_x = pow(m, 3, n1 * n2 * n3)
Coppersmith定理攻击
Coppersmith定理指出在一个e阶的mod n多项式f(x)中,如果有一个根小于n^frac{1}{e} ,就可以运用一个O(log n)的算法求出这些根。
这个定理可以应用于RSA算法。如果e = 3并且在明文当中只有三分之二的比特是已知的,这种算法可以求出明文中所有的比特
给定p xor q的后一些位
第五空间的题,当时没搜出来,不知道哪里出了问题……
https://math.stackexchange.com/questions/2087588/integer-factorization-with-additional-knowledge-of-p-oplus-q/2087589#2087589
这篇关于RSA的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-14后台交互资料入门指南
- 2024-11-14如何轻松创建项目环境:新手入门教程
- 2024-11-14如何抽离公共代码:初级开发者指南
- 2024-11-14Python编程入门指南
- 2024-11-14Python编程入门:如何获取参数
- 2024-11-14JWT 用户校验:简单教程与实践
- 2024-11-14Pre-commit 自动化测试入门指南
- 2024-11-14Python编程基础
- 2024-11-14Server Action入门教程:轻松掌握服务器操作
- 2024-11-14Server Component入门教程:轻松搭建服务器组件