Nginx 实现高并发原理
2021/10/15 7:17:48
本文主要是介绍Nginx 实现高并发原理,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Nginx 实现高并发原理
1. 概述
Nginx由内核和模块组成。
Nginx本身做的工作实际很少,当它接到一个HTTP请求时,它仅仅是通过查找配置文件将此次请求映射到一个location block,而此location中所配置的各个指令则会启动不同的模块去完成工作,因此模块可以看做Nginx真正的劳动工作者。通常一个location中的指令会涉及一个handler模块和多个filter模块(当然,多个location可以复用同一个模块)。handler模块负责处理请求,完成响应内容的生成,而filter模块对响应内容进行处理。
Nginx进程模型
Nginx默认采用多进程工作方式,Nginx启动后,会运行一个master进程和多个worker进程。其中master充当整个进程组与用户的交互接口,同时对进程进行监护,管理worker进程来实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。worker用来处理基本的网络事件,worker之间是平等的,他们共同竞争来处理来自客户端的请求。
Nginx 采用的是多进程(单线程) & 多路IO复用模型。使用了 I/O 多路复用技术的 Nginx,就成了”并发事件驱动“的服务器
2. 惊群现象
主进程(master 进程)首先通过 socket()
来创建一个 sock 文件描述符用来监听,然后fork生成子进程(workers 进程),子进程将继承父进程的 sockfd(socket 文件描述符),之后子进程 accept()
后将创建已连接描述符(connected descriptor)),然后通过已连接描述符来与客户端通信。
那么,由于所有子进程都继承了父进程的 sockfd,那么当连接进来时,所有子进程都将收到通知并“争着”与它建立连接,这就叫惊群现象。大量的进程被激活又挂起,只有一个进程可以accept()
到这个连接,这当然会消耗系统资源。
3. Nginx对惊群现象的处理
Nginx 提供了一个 accept_mutex
这个东西,这是一个加在accept上的一把共享锁。即每个 worker 进程在执行 accept 之前都需要先获取锁,获取不到就放弃执行 accept()
。有了这把锁之后,同一时刻,就只会有一个进程去 accpet()
,这样就不会有惊群问题了。accept_mutex
是一个可控选项,我们可以显示地关掉,默认是打开的。
4. Nginx进程详解
nginx的进程模型如图所示:
使用多进程模式,不仅能提高并发率,而且进程之间相互独立,一个 worker 进程挂了不会影响到其他 worker 进程。
注意:
worker 进程数,一般会设置成机器 cpu 核数。因为更多的worker 数,只会导致进程相互竞争 cpu,从而带来不必要的上下文切换
4.1 master进程
主要用来管理worker进程,包含:
- 接收来自外界的信号
- 向各worker进程发送信号
- 监控worker进程的运行状态
- 当worker进程退出后(异常情况下),会自动重新启动新的worker进程。
master进程充当整个进程组与用户的交互接口,同时对进程进行监护。它不需要处理网络事件,不负责业务的执行,只会通过管理worker进程来实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。
我们要控制nginx,只需要通过kill向master进程发送信号就行了。比如kill -HUP pid,则是告诉nginx,从容地重启nginx,我们一般用这个信号来重启nginx,或重新加载配置,因为是从容地重启,因此服务是不中断的。master进程在接收到HUP信号后是怎么做的呢?首先master进程在接到信号后,会先重新加载配置文件,然后再启动新的worker进程,并向所有老的worker进程发送信号,告诉他们可以光荣退休了。新的worker在启动后,就开始接收新的请求,而老的worker在收到来自master的信号后,就不再接收新的请求,并且在当前进程中的所有未处理完的请求处理完成后,再退出。当然,直接给master进程发送信号,这是比较老的操作方式
nginx在0.8版本之后,引入了一系列命令行参数,来方便我们管理。比如,
./nginx -s reload
,就是来重启nginx,
./nginx -s stop
,就是来停止nginx的运行。
如何做到的呢?
我们还是拿reload来说,我们看到,执行命令时,我们是启动一个新的nginx进程,而新的nginx进程在解析到reload参数后,就知道我们的目的是控制nginx来重新加载配置文件了,它会向master进程发送信号,然后接下来的动作,就和我们直接向master进程发送信号一样了。
4.2 worker进程
而基本的网络事件,则是放在worker进程中来处理了。多个worker进程之间是对等的,他们同等竞争来自客户端的请求,各进程互相之间是独立的。一个请求,只可能在一个worker进程中处理,一个worker进程,不可能处理其它进程的请求。worker进程的个数是可以设置的,一般我们会设置与机器cpu核数一致,这里面的原因与nginx的进程模型以及事件处理模型是分不开的。
worker进程之间是平等的,每个进程,处理请求的机会也是一样的。当我们提供80端口的http服务时,一个连接请求过来,每个进程都有可能处理这个连接,怎么做到的呢?
首先,每个worker进程都是从master进程fork过来,在master进程里面,先建立好需要listen的socket(listenfd)之后,然后再fork出多个worker进程。所有worker进程的listenfd会在新连接到来时变得可读,为保证只有一个进程处理该连接,所有worker进程在注册listenfd读事件前抢accept_mutex,抢到互斥锁的那个进程注册listenfd读事件,在读事件里调用accept接受该连接。
当一个worker进程在accept这个连接之后,就开始读取请求,解析请求,处理请求,产生数据后,再返回给客户端,最后才断开连接,这样一个完整的请求就是这样的了。
我们可以看到,一个请求,完全由worker进程来处理,而且只在一个worker进程中处理。
进程连接数
每个worker进程都有一个独立的连接池,连接池的大小是worker_connections
。这里的连接池里面保存的其实不是真实的连接,它只是一个worker_connections
大小的一个ngx_connection_t
结构的数组。并且,nginx会通过一个链表free_connections
来保存所有的空闲ngx_connection_t
,每次获取一个连接时,就从空闲连接链表中获取一个,用完后,再放回空闲连接链表里面。一个nginx能建立的最大连接数,应该是worker_connections * worker_processes
。当然,这里说的是最大连接数,对于HTTP请求本地资源来说,能够支持的最大并发数量是worker_connections * worker_processes
,而如果是HTTP作为反向代理来说,最大并发数量应该是worker_connections * worker_processes/2
。因为作为反向代理服务器,每个并发会建立与客户端的连接和与后端服务的连接,会占用两个连接。
4.3 worker进程工作流程
当一个 worker 进程在 accept()
这个连接之后,就开始读取请求,解析请求,处理请求,产生数据后,再返回给客户端,最后才断开连接,一个完整的请求。一个请求,完全由 worker 进程来处理,而且只能在一个 worker 进程中处理。
5. 这样做带来的好处:
-
节省锁带来的开销。每个 worker 进程都是独立的进程,不共享资源,不需要加锁。同时在编程以及问题查上时,也会方便很多。
-
独立进程,减少风险。采用独立的进程,可以让互相之间不会影响,一个进程退出后,其它进程还在工作,服务不会中断,master 进程则很快重新启动新的 worker 进程。当然,worker 进程的也能发生意外退出。
6. IO 多路复用
多进程模型每个进程/线程只能处理一路IO,那么 Nginx是如何处理多路IO呢?
如果不使用 IO 多路复用,那么在一个进程中,同时只能处理一个请求,比如执行 accept(),如果没有连接过来,那么程序会阻塞在这里,直到有一个连接过来,才能继续向下执行。
而多路复用,允许我们只在事件发生时才将控制返回给程序,而其他时候内核都挂起进程,随时待命。
核心:Nginx采用的 IO多路复用模型epoll
epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树),其工作流程分为三部分:
- 调用
int epoll_create(int size)
建立一个epoll对象,内核会创建一个eventpoll结构体,用于存放通过epoll_ctl()向epoll对象中添加进来的事件,这些事件都会挂载在红黑树中。 - 调用
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
在 epoll 对象中为 fd 注册事件,所有添加到epoll中的件都会与设备驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个sockfd的回调方法,将sockfd添加到eventpoll 中的双链表 - 调用
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout)
来等待事件的发生,timeout 为 -1 时,该调用会阻塞知道有事件发生
这样,注册好事件之后,只要有 fd 上事件发生,epoll_wait() 就能检测到并返回给用户,用户就能”非阻塞“地进行 I/O 了。
epoll() 中内核则维护一个链表,epoll_wait 直接检查链表是不是空就知道是否有文件描述符准备好了。(epoll 与 select 相比最大的优点是不会随着 sockfd 数目增长而降低效率,使用 select() 时,内核采用轮训的方法来查看是否有fd 准备好,其中的保存 sockfd 的是类似数组的数据结构 fd_set,key 为 fd,value 为 0 或者 1。)
能达到这种效果,是因为在内核实现中 epoll 是根据每个 sockfd 上面的与设备驱动程序建立起来的回调函数实现的。那么,某个 sockfd 上的事件发生时,与它对应的回调函数就会被调用,来把这个 sockfd 加入链表,其他处于“空闲的”状态的则不会。在这点上,epoll 实现了一个”伪”AIO。但是如果绝大部分的 I/O 都是“活跃的”,每个 socket 使用率很高的话,epoll效率不一定比 select 高(可能是要维护队列复杂)。
可以看出,因为一个进程里只有一个线程,所以一个进程同时只能做一件事,但是可以通过不断地切换来“同时”处理多个请求。
例子:
- Nginx 会注册一个事件:“如果来自一个新客户端的连接请求到来了,再通知我”,此后只有连接请求到来,服务器才会执行 accept() 来接收请求。
- 又比如向上游服务器(比如 PHP-FPM)转发请求,并等待请求返回时,这个处理的 worker 不会在这阻塞,它会在发送完请求后,注册一个事件:“如果缓冲区接收到数据了,告诉我一声,我再将它读进来”,于是进程就空闲下来等待事件发生。
这样,基于 多进程+epoll, Nginx 便能实现高并发。
Nginx 与 多进程模式 Apache 的比较:
-
对于Apache,每个请求都会独占一个工作线程,当并发数到达几千时,就同时有几千的线程在处理请求了。这对于操作系统来说,占用的内存非常大,线程的上下文切换带来的cpu开销也很大,性能就难以上去,同时这些开销是完全没有意义的。
- web服务器进程(web server process)在监听套接字上,监听新的连接(客户端发起的新比赛)。
- 一局新的比赛发起后,进程就开始工作,每一步棋下完后都进入阻塞状态,等待客户端走下一步棋。
- 一旦比赛结束,web服务器进程会看看客户是否想开始新的比赛(这相当于一个存活的连接)。如果连接被关闭(客户端离开或者超时),web服务器进程会回到监听状态,等待全新的比赛
-
对于Nginx来讲,一个进程只有一个主线程,通过异步非阻塞的事件处理机制,实现了循环处理多个准备好的事件,从而实现轻量级和高并发。
- 工作进程在监听套接字和连接套接字上等待事件。
- 事件发生在套接字上,工作进程会处理这些事件。
- 监听套接字上的事件意味着:客户端开始了一局新的游戏。工作进程创建了一个新的连接套接字。
- 连接套接字上的事件意味着:客户端移动了棋子。工作进程会迅速响应。
NGINX的规模可以很好地支持每个工作进程上数以万计的连接。每个新连接都会创建另一个文件描述符,并消耗工作进程中少量的额外内存。每一个连接的额外消耗都很少。NGINX进程可以保持固定的CPU占用率。当没有工作时,上下文切换也较少。
APACHE 的阻塞式的、一个连接/一个进程的模式中,每个连接需要大量的额外资源和开销,并且上下文切换(从一个进程到另一个进程)非常频繁。
这篇关于Nginx 实现高并发原理的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-13用Nginx防范DDoS攻击的那些事儿
- 2024-12-13用Terraform在AWS上搭建简单NGINX服务器指南
- 2024-10-29Nginx发布学习:从入门到实践的简单教程
- 2024-10-28Nginx发布:新手入门教程
- 2024-10-21nginx 怎么设置文件上传最大20M限制-icode9专业技术文章分享
- 2024-10-17关闭 nginx的命令是什么?-icode9专业技术文章分享
- 2024-09-17Nginx实用篇:实现负载均衡、限流与动静分离
- 2024-08-21宝塔nginx新增8022端口方法步骤-icode9专业技术文章分享
- 2024-08-21nginx配置,让ws升级为wss访问的方法步骤-icode9专业技术文章分享
- 2024-08-15nginx ws代理配置方法步骤-icode9专业技术文章分享