卷积神经网络
2021/10/16 23:09:41
本文主要是介绍卷积神经网络,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1.卷积:提取特征
2.卷积神经网络可以分为两个大的部分:提取特征、分类
3.卷积的步长:卷积核走一步的距离
4.
5.卷积操作:其实是把一张大图片分解成好多个小部分,然后依次对这些小部分进行识别
6.最大池化、均值池化
池化层的作用:卷积操作产生了太多的数据,如果没有pooling对这些数据进行压缩,那么网络的运算就会非常的巨大,而且数据参数过于冗余就非常容易导致过度拟合。
7.激活函数的作用是神经网络设计的一个核心单元,激活函数的作用是为了在神经网络中加入非线性
8.softmax用于多分类过程中,它将多个神经元的输出,映射到0.,1区间,可以看成概率来理解,从而来进行多分类
11.
12.
这篇关于卷积神经网络的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-10TiDB 8.5 LTS 发版——支持无限扩展,开启 AI 就绪新时代
- 2025-01-07SaaS工具的智能升级:AI Agent赋能的潜力与应用前景
- 2025-01-07SaaS+AI如何重新定义企业问题解决方式?
- 2025-01-04如何利用AI看板工具提升团队协作效率?10大深度评测与实用技巧
- 2025-01-03带有自反功能的自适应检索增强生成系统
- 2025-01-03FAISS向量数据库在生产LLM应用中的使用指南
- 2025-01-03掌握RAG:深入探讨文本分割技巧
- 2025-01-03深入探究结构化输出的应用技巧
- 2025-01-03因果推断的基本问题:现代视角下的统计挑战
- 2025-01-03预测的艺术:预AI时代的滤波技术讲解