Kubernetes Job Controller 原理和源码分析(三)
2021/10/19 17:39:49
本文主要是介绍Kubernetes Job Controller 原理和源码分析(三),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
概述Job controller 的启动processNextWorkItem()核心调谐逻辑入口 - syncJob()Pod 数量管理 - manageJob()小结
概述
源码版本:kubernetes master 分支 commit-fe62fc(2021年10月14日)
Job 是主要的 Kubernetes 原生 Workload 资源之一,是在 Kubernetes 之上运行批处理任务最简单的方式,在 AI 模型训练等场景下最基础的实现版本就是拉起一个 Job 来完成一次训练任务,然后才是各种自定义 “Job” 实现进阶处理,比如分布式训练需要一个 “Job” 同时拉起多个 Pod,但是每个 Pod 的启动参数会有差异。所以深入理解 Job 的功能和实现细节是进一步开发自定义 “Job” 类型工作负载的基础。
我们在《Kubernetes Job Controller 原理和源码分析(一)》中详细介绍了 Job 的特性,在《Kubernetes Job Controller 原理和源码分析(二)》 中一路从 Job 控制器源码入口跟到所有 EventHandler 的实现,今天我们继续从 workqueue 的另外一端看下任务出队后的主要调谐逻辑实现。
注意:阅读 Job 源码需要有一定的自定义控制器工作原理基础,里面涉及到了 Informer 工作机制、workqueue(延时工作队列)、ResourceEventHandler 等等逻辑,没有相关知识储备直接看本文会有一定挑战,建议先阅读《深入理解 K8S 原理与实现》系列目录里列的相关文章。
《Kubernetes Job Controller 原理和源码分析》分为三讲:
- 《Kubernetes Job Controller 原理和源码分析(一)》 - 详细介绍 Job 的用法和支持的特性
- 《Kubernetes Job Controller 原理和源码分析(二)》 - 源码分析第一部分,从控制器入口一直到所有 EventHandler 的具体实现,也就是“调谐任务”进入 workqueue 之前的全部逻辑
- 《Kubernetes Job Controller 原理和源码分析(三)》 - 源码分析第二部分,从 workqueue 消费“调谐任务”,具体的调谐过程实现等代码逻辑
Job controller 的启动
继续来看 Run()
方法
- pkg/controller/job/job_controller.go
1func (jm *Controller) Run(workers int, stopCh <-chan struct{}) { defer utilruntime.HandleCrash() defer jm.queue.ShutDown() defer jm.orphanQueue.ShutDown() klog.Infof("Starting job controller") defer klog.Infof("Shutting down job controller") if !cache.WaitForNamedCacheSync("job", stopCh, jm.podStoreSynced, jm.jobStoreSynced) { return } for i := 0; i < workers; i++ { go wait.Until(jm.worker, time.Second, stopCh) } go wait.Until(jm.orphanWorker, time.Second, stopCh) <-stopCh 20}
可以看到这里的逻辑在两个 worker 里,继续看 jm.worker 和 jm.orphanWorker 是什么逻辑
1func (jm *Controller) worker() { for jm.processNextWorkItem() { } 4}
worker()
方法里简单调用了 processNextWorkItem()
方法,另外一个 orphanWorker()
也是类似逻辑
1func (jm *Controller) orphanWorker() { for jm.processNextOrphanPod() { } 4}
继续看
processNextWorkItem()
1func (jm *Controller) processNextWorkItem() bool { key, quit := jm.queue.Get() if quit { return false } defer jm.queue.Done(key) forget, err := jm.syncHandler(key.(string)) // 核心逻辑 if err == nil { if forget { jm.queue.Forget(key) } return true } utilruntime.HandleError(fmt.Errorf("syncing job: %w", err)) if !apierrors.IsConflict(err) { jm.queue.AddRateLimited(key) } return true 22}
这里的核心逻辑只有一行,就是 jm.syncHandler(key.(string))
调用。我们往里跟这个 sincHandler 方法可以看到其实现是 func (jm *Controller) syncJob(key string) (forget bool, rErr error)
方法,这个方法里就是主要的调谐逻辑了。看下具体逻辑:
核心调谐逻辑入口 - syncJob()
从 workqueue 出来任务之后主要的业务逻辑从这里开始,这个方法很长……
- pkg/controller/job/job_controller.go:588
1func (jm *Controller) syncJob(key string) (forget bool, rErr error) { startTime := time.Now() defer func() { klog.V(4).Infof("Finished syncing job %q (%v)", key, time.Since(startTime)) }() // key 的结构一般是 namespace/name 的格式 ns, name, err := cache.SplitMetaNamespaceKey(key) if err != nil { return false, err } if len(ns) == 0 || len(name) == 0 { return false, fmt.Errorf("invalid job key %q: either namespace or name is missing", key) } // 这里叫 sharedJob 是因为取的是本地 cache 的 job,通过 Indexer 提供的能力 sharedJob, err := jm.jobLister.Jobs(ns).Get(name) if err != nil { // 如果找不到,说明被其他 goroutine 删掉了,忽略 if apierrors.IsNotFound(err) { klog.V(4).Infof("Job has been deleted: %v", key) jm.expectations.DeleteExpectations(key) jm.finalizerExpectations.deleteExpectations(key) return true, nil } return false, err } // 拷贝一份避免修改 job := *sharedJob.DeepCopy() // 通过 JobCondition 的 Type 是否为 "Complete"/"Failed" 来判断 job 是否已经完成了 if IsJobFinished(&job) { return true, nil } // 这个 feature 是 1.22 版本进入 beta 的,如果两边配置不一致,则无法继续处理 // 本质通过 .Spec.CompletionMode == "Indexed" 来判断 if !feature.DefaultFeatureGate.Enabled(features.IndexedJob) && isIndexedJob(&job) { jm.recorder.Event(&job, v1.EventTypeWarning, "IndexedJobDisabled", "Skipped Indexed Job sync because feature is disabled.") return false, nil } // CompletionMode 为 "NonIndexed"/"Indexed",如果是其他值则不识别 if job.Spec.CompletionMode != nil && *job.Spec.CompletionMode != batch.NonIndexedCompletion && *job.Spec.CompletionMode != batch.IndexedCompletion { jm.recorder.Event(&job, v1.EventTypeWarning, "UnknownCompletionMode", "Skipped Job sync because completion mode is unknown") return false, nil } // 配置当前的 completionMode,默认为 "NonIndexed" completionMode := string(batch.NonIndexedCompletion) if isIndexedJob(&job) { completionMode = string(batch.IndexedCompletion) } // "reconciling" action := metrics.JobSyncActionReconciling // metrics 逻辑 defer func() { result := "success" if rErr != nil { result = "error" } metrics.JobSyncDurationSeconds.WithLabelValues(completionMode, result, action).Observe(time.Since(startTime).Seconds()) metrics.JobSyncNum.WithLabelValues(completionMode, result, action).Inc() }() var expectedRmFinalizers sets.String var uncounted *uncountedTerminatedPods // 处理 pod finalizer,1.22 版本 alpha 的特性 if trackingUncountedPods(&job) { klog.V(4).InfoS("Tracking uncounted Pods with pod finalizers", "job", klog.KObj(&job)) if job.Status.UncountedTerminatedPods == nil { job.Status.UncountedTerminatedPods = &batch.UncountedTerminatedPods{} } uncounted = newUncountedTerminatedPods(*job.Status.UncountedTerminatedPods) expectedRmFinalizers = jm.finalizerExpectations.getExpectedUIDs(key) // 删除 job 的 "batch.kubernetes.io/job-tracking" 注解 } else if patch := removeTrackingAnnotationPatch(&job); patch != nil { if err := jm.patchJobHandler(&job, patch); err != nil { return false, fmt.Errorf("removing tracking finalizer from job %s: %w", key, err) } } jobNeedsSync := jm.expectations.SatisfiedExpectations(key) // 提取相关 pods pods, err := jm.getPodsForJob(&job, uncounted != nil) if err != nil { return false, err } // 判断依据是 PodPhase 不为 "Succeeded" 和 "Failed" 两个结果态 activePods := controller.FilterActivePods(pods) active := int32(len(activePods)) // 计算 "Succeeded" 和 "Failed" 状态 pod 的数量 succeeded, failed := getStatus(&job, pods, uncounted, expectedRmFinalizers) // 满足这个条件说明这个 pod 是新创建的,这时候需要设置 .Status.StartTime if job.Status.StartTime == nil && !jobSuspended(&job) { now := metav1.Now() job.Status.StartTime = &now // 如果 ActiveDeadlineSeconds 不为空,则在 ActiveDeadlineSeconds 时间到后再次调谐 if job.Spec.ActiveDeadlineSeconds != nil { klog.V(4).Infof("Job %s has ActiveDeadlineSeconds will sync after %d seconds", key, *job.Spec.ActiveDeadlineSeconds) jm.queue.AddAfter(key, time.Duration(*job.Spec.ActiveDeadlineSeconds)*time.Second) } } var manageJobErr error var finishedCondition *batch.JobCondition // 有新增 failed 到 pod jobHasNewFailure := failed > job.Status.Failed // 有新的 failed pod 产生,而且 active 的 pod 数量不等于并发数,而且已经失败的 pod 数量大于重试次数限制 exceedsBackoffLimit := jobHasNewFailure && (active != *job.Spec.Parallelism) && (failed > *job.Spec.BackoffLimit) // pastBackoffLimitOnFailure 计算的是当 pod 重启策略为 OnFailure 时重启次数是否超过限制 if exceedsBackoffLimit || pastBackoffLimitOnFailure(&job, pods) { // 重试次数达到上限,Condition 更新为 "Failed" finishedCondition = newCondition(batch.JobFailed, v1.ConditionTrue, "BackoffLimitExceeded", "Job has reached the specified backoff limit") // 超时了 } else if pastActiveDeadline(&job) { finishedCondition = newCondition(batch.JobFailed, v1.ConditionTrue, "DeadlineExceeded", "Job was active longer than specified deadline") } // 计算索引 var prevSucceededIndexes, succeededIndexes orderedIntervals if isIndexedJob(&job) { prevSucceededIndexes, succeededIndexes = calculateSucceededIndexes(&job, pods) succeeded = int32(succeededIndexes.total()) } suspendCondChanged := false // 如果 job 失败了,这时候在 Active 状态的 Pod 需要直接删除 if finishedCondition != nil { deleted, err := jm.deleteActivePods(&job, activePods) if uncounted == nil { deleted = active } else if deleted != active { finishedCondition = nil } active -= deleted failed += deleted manageJobErr = err } else { manageJobCalled := false if jobNeedsSync && job.DeletionTimestamp == nil { // manageJob() 方法是根据 Spec 管理运行中 Pod 数量的核心方法 active, action, manageJobErr = jm.manageJob(&job, activePods, succeeded, succeededIndexes) manageJobCalled = true } // 判断 job 已经完成 complete := false if job.Spec.Completions == nil { complete = succeeded > 0 && active == 0 } else { complete = succeeded >= *job.Spec.Completions && active == 0 } if complete { finishedCondition = newCondition(batch.JobComplete, v1.ConditionTrue, "", "") // Job 挂起是 1.22 版本 beta 的新特性 } else if feature.DefaultFeatureGate.Enabled(features.SuspendJob) && manageJobCalled { // 如果配置了挂起 if job.Spec.Suspend != nil && *job.Spec.Suspend { // 只有没完成的 Job 可以被挂起 var isUpdated bool job.Status.Conditions, isUpdated = ensureJobConditionStatus(job.Status.Conditions, batch.JobSuspended, v1.ConditionTrue, "JobSuspended", "Job suspended") if isUpdated { suspendCondChanged = true jm.recorder.Event(&job, v1.EventTypeNormal, "Suspended", "Job suspended") } } else { // 挂起状态唤醒 var isUpdated bool job.Status.Conditions, isUpdated = ensureJobConditionStatus(job.Status.Conditions, batch.JobSuspended, v1.ConditionFalse, "JobResumed", "Job resumed") if isUpdated { suspendCondChanged = true jm.recorder.Event(&job, v1.EventTypeNormal, "Resumed", "Job resumed") now := metav1.Now() // 重置 StartTime job.Status.StartTime = &now } } } } forget = false // 检查成功的 pod 是否多了 if job.Status.Succeeded < succeeded { forget = true } if uncounted != nil { // 挂起状态变更或者 active pod 数量变更 needsStatusUpdate := suspendCondChanged || active != job.Status.Active job.Status.Active = active // Finalizer 相关逻辑 err = jm.trackJobStatusAndRemoveFinalizers(&job, pods, prevSucceededIndexes, *uncounted, expectedRmFinalizers, finishedCondition, needsStatusUpdate) if err != nil { return false, fmt.Errorf("tracking status: %w", err) } jobFinished := IsJobFinished(&job) if jobHasNewFailure && !jobFinished { return forget, fmt.Errorf("failed pod(s) detected for job key %q", key) } forget = true return forget, manageJobErr } // 移除所有 Finalizer if err := jm.removeTrackingFinalizersFromAllPods(pods); err != nil { return false, fmt.Errorf("removing disabled finalizers from job pods %s: %w", key, err) } // 判断状态是否需要更新 if job.Status.Active != active || job.Status.Succeeded != succeeded || job.Status.Failed != failed || suspendCondChanged || finishedCondition != nil { job.Status.Active = active job.Status.Succeeded = succeeded job.Status.Failed = failed if isIndexedJob(&job) { job.Status.CompletedIndexes = succeededIndexes.String() } job.Status.UncountedTerminatedPods = nil jm.enactJobFinished(&job, finishedCondition) if _, err := jm.updateStatusHandler(&job); err != nil { return forget, err } if jobHasNewFailure && !IsJobFinished(&job) { // returning an error will re-enqueue Job after the backoff period return forget, fmt.Errorf("failed pod(s) detected for job key %q", key) } forget = true } return forget, manageJobErr 234}
Pod 数量管理 - manageJob()
上面 syncJob() 中有一个 manageJob() 方法调用,manageJob() 具体控制一个 Job 下应该有多少个 Active 的 Pod,执行“多删少建”工作。这个方法也很长……
- pkg/controller/job/job_controller.go:1245
1func (jm *Controller) manageJob(job *batch.Job, activePods []*v1.Pod, succeeded int32, succeededIndexes []interval) (int32, string, error) { // 运行中的 pod 数量 active := int32(len(activePods)) // 并发度 parallelism := *job.Spec.Parallelism jobKey, err := controller.KeyFunc(job) if err != nil { utilruntime.HandleError(fmt.Errorf("Couldn't get key for job %#v: %v", job, err)) return 0, metrics.JobSyncActionTracking, nil } // 挂起状态 if jobSuspended(job) { klog.V(4).InfoS("Deleting all active pods in suspended job", "job", klog.KObj(job), "active", active) podsToDelete := activePodsForRemoval(job, activePods, int(active)) jm.expectations.ExpectDeletions(jobKey, len(podsToDelete)) // 挂起需要直接删除所有 Active 的 Pod removed, err := jm.deleteJobPods(job, jobKey, podsToDelete) active -= removed return active, metrics.JobSyncActionPodsDeleted, err } wantActive := int32(0) if job.Spec.Completions == nil { // 对应没有配置 Completions 的场景,这时候运行中的 Pod 需要和并发数相等,有一个 Pod 成功时判断 Job 状态为成功 if succeeded > 0 { wantActive = active } else { wantActive = parallelism } } else { // 指定了 Completions 场景,这时候运行中的 Pod 数量不应该超过 Completions 减去已经成功的数量 wantActive = *job.Spec.Completions - succeeded // 不能超过并发数 if wantActive > parallelism { wantActive = parallelism } if wantActive < 0 { wantActive = 0 } } // 如果实际 active 数量大于应该 active 的数量,就需要删除几个 rmAtLeast := active - wantActive if rmAtLeast < 0 { rmAtLeast = 0 } // 计算哪些 Pod 需要被删除 podsToDelete := activePodsForRemoval(job, activePods, int(rmAtLeast)) if len(podsToDelete) > MaxPodCreateDeletePerSync { podsToDelete = podsToDelete[:MaxPodCreateDeletePerSync] } // 执行删除动作 if len(podsToDelete) > 0 { jm.expectations.ExpectDeletions(jobKey, len(podsToDelete)) klog.V(4).InfoS("Too many pods running for job", "job", klog.KObj(job), "deleted", len(podsToDelete), "target", wantActive) removed, err := jm.deleteJobPods(job, jobKey, podsToDelete) active -= removed return active, metrics.JobSyncActionPodsDeleted, err } // 实际运行的 pod 数量不够场景 if active < wantActive { diff := wantActive - active // 如果大于上限 500,则设置为 500 if diff > int32(MaxPodCreateDeletePerSync) { diff = int32(MaxPodCreateDeletePerSync) } jm.expectations.ExpectCreations(jobKey, int(diff)) errCh := make(chan error, diff) klog.V(4).Infof("Too few pods running job %q, need %d, creating %d", jobKey, wantActive, diff) wait := sync.WaitGroup{} var indexesToAdd []int if isIndexedJob(job) { indexesToAdd = firstPendingIndexes(activePods, succeededIndexes, int(diff), int(*job.Spec.Completions)) diff = int32(len(indexesToAdd)) } active += diff // 提取 pod 模板 podTemplate := job.Spec.Template.DeepCopy() if isIndexedJob(job) { addCompletionIndexEnvVariables(podTemplate) } if trackingUncountedPods(job) { podTemplate.Finalizers = appendJobCompletionFinalizerIfNotFound(podTemplate.Finalizers) } // batchSize 从 1 开始,然后指数递增,2、4、8 …… 的方式,这是一种“慢启动”过程,防止一下子尝试创建大量 Pod,但是由于相同的原因批量失败 for batchSize := int32(integer.IntMin(int(diff), controller.SlowStartInitialBatchSize)); diff > 0; batchSize = integer.Int32Min(2*batchSize, diff) { errorCount := len(errCh) wait.Add(int(batchSize)) for i := int32(0); i < batchSize; i++ { // -1 completionIndex := unknownCompletionIndex if len(indexesToAdd) > 0 { completionIndex = indexesToAdd[0] indexesToAdd = indexesToAdd[1:] } go func() { template := podTemplate generateName := "" if completionIndex != unknownCompletionIndex { template = podTemplate.DeepCopy() addCompletionIndexAnnotation(template, completionIndex) // 设置 Hostname template.Spec.Hostname = fmt.Sprintf("%s-%d", job.Name, completionIndex) generateName = podGenerateNameWithIndex(job.Name, completionIndex) } defer wait.Done() // 创建 pod err := jm.podControl.CreatePodsWithGenerateName(job.Namespace, template, job, metav1.NewControllerRef(job, controllerKind), generateName) if err != nil { if apierrors.HasStatusCause(err, v1.NamespaceTerminatingCause) { return } } if err != nil { defer utilruntime.HandleError(err) klog.V(2).Infof("Failed creation, decrementing expectations for job %q/%q", job.Namespace, job.Name) jm.expectations.CreationObserved(jobKey) atomic.AddInt32(&active, -1) errCh <- err } }() } wait.Wait() skippedPods := diff - batchSize if errorCount < len(errCh) && skippedPods > 0 { klog.V(2).Infof("Slow-start failure. Skipping creation of %d pods, decrementing expectations for job %q/%q", skippedPods, job.Namespace, job.Name) active -= skippedPods for i := int32(0); i < skippedPods; i++ { jm.expectations.CreationObserved(jobKey) } // 忽略的 pod 在下次调谐过程中继续尝试“慢启动” break } // 成功处理的数量减掉 diff -= batchSize } return active, metrics.JobSyncActionPodsCreated, errorFromChannel(errCh) } return active, metrics.JobSyncActionTracking, nil 143}
小结
Job 控制器实现的逻辑并不复杂,就像我们一开始在《Kubernetes Job Controller 原理和源码分析(一)》中介绍的那些特性一样,Job 要支持的功能并不多。但是要完整理解 Pod 控制器全部源码并不简单,一方面需要对控制器模式本身有一定的理解,知道控制器的整体工作流;另外一方面 Job 控制器的实现中有大量健壮性代码,在实现功能的基础上代码量大了很多,要理清所有的细节还是有一定烧脑。最后这个源码组织结构着实看着不舒服,几百行代码“怼”到一个函数里,对“阅读者”不太友好。
(转载请保留本文原始链接 https://www.danielhu.cn)
这篇关于Kubernetes Job Controller 原理和源码分析(三)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-05基于Kubernetes的自定义AWS云平台搭建指南
- 2024-11-05基于Kubernetes Gateway API的现代流量管理方案
- 2024-11-05在Kubernetes上部署你的第一个应用:Nginx服务器
- 2024-11-05利用拓扑感知路由控制Kubernetes中的流量
- 2024-11-05Kubernetes中的层次命名空间:更灵活的资源管理方案
- 2024-11-055分钟上手 Kubernetes:精简实用的 Kubectl 命令速查宝典!
- 2024-10-30K8s 容器的定向调度与亲和性
- 2024-10-28云原生周刊:K8s未来三大发展方向 丨2024.10.28
- 2024-10-25亚马逊弹性Kubernetes服务(EKS)实战:轻松搭建Kubernetes平台
- 2024-10-22KubeSphere 最佳实战:Kubernetes 部署集群模式 Nacos 实战指南