Java线程池源码分析
2021/10/22 9:11:34
本文主要是介绍Java线程池源码分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Java线程池,基于jdk1.8
一些属性
//线程数量和线程池状态 高三位是状态 低29位是数量 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //位移位数 29 private static final int COUNT_BITS = Integer.SIZE - 3; //容量 2的29次方-1 00011111 11111111 11111111 11111111 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 线程池状态标记 // 11100000 00000000 00000000 00000000 private static final int RUNNING = -1 << COUNT_BITS; // 00000000 00000000 00000000 00000000 private static final int SHUTDOWN = 0 << COUNT_BITS; // 00100000 00000000 00000000 00000000 private static final int STOP = 1 << COUNT_BITS; // 01000000 00000000 00000000 00000000 private static final int TIDYING = 2 << COUNT_BITS; // 01100000 00000000 00000000 00000000 private static final int TERMINATED = 3 << COUNT_BITS; // 位运算 获取当前线程池的状态 private static int runStateOf(int c) { return c & ~CAPACITY; } // 位运算 获取当前线程池的线程数 private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; } private final BlockingQueue<Runnable> workQueue; private final ReentrantLock mainLock = new ReentrantLock(); private final HashSet<Worker> workers = new HashSet<Worker>(); //是否 允许核心线程超时 private volatile boolean allowCoreThreadTimeOut; private int largestPoolSize;
构造方法
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), handler); } //参数依次是 核心线程数 最大线程数 线程存活时间 线程存活时间的单位 阻塞队列 线程工厂 拒绝策略 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
提交任务
public void execute(Runnable command) { //任务为空,抛异常 if (command == null) throw new NullPointerException(); //线程计数 int c = ctl.get(); //当前线程池的线程数 小于 核心线程数 if (workerCountOf(c) < corePoolSize) { // 添加线程 if (addWorker(command, true)) return; //获取最新的线程数 c = ctl.get(); } //在运行中并且可以将任务添加到阻塞队列(阻塞队列未满) if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); // 线程池不是运行中 并且 将阻塞队列 里面的线程 移除 if (! isRunning(recheck) && remove(command)) //执行拒绝 reject(command); //如果线程池中没有线程了,则创建一个线程执行任务 else if (workerCountOf(recheck) == 0) addWorker(null, false); } // 阻塞队列满了,添加线程失败(达到最大线程数) 执行拒绝 else if (!addWorker(command, false)) reject(command); } private static boolean isRunning(int c) { return c < SHUTDOWN; } //添加线程方法 当前任务 是否核心线程 private boolean addWorker(Runnable firstTask, boolean core) { retry://跳出标志 for (;;) { int c = ctl.get(); //获取线程池状态 int rs = runStateOf(c); // 检查阻塞队列是否为空 阻塞队列不为空,说明里面有任务,说明线程数已经达到核心线程数的限制 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); // 线程数 大于等于 最大线程容量 或者 线程数大于等于 核心线程数/最大线程数 不再添加线程 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //增加线程数 跳出循环,执行flag处的语句 if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl //线程池状态改变了,再次进行循环 if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } // flag 添加的线程 启动 和 添加成功标记 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //将当前任务封装成一个Worker线程 w = new Worker(firstTask); //工作线程 final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock();//加锁 try { // int rs = runStateOf(ctl.get()); // 当前线程池是运行状态 || 是SHUTDOWN并且当前任务为空 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { // 新创建的线程 已经存活 抛异常 刚创建还没启动怎么就启动了 if (t.isAlive()) throw new IllegalThreadStateException(); //添加到工作线程集合 workers.add(w); // 判断工作线程数是否大于醉倒线程数 出现过的最大线程数 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; //标记添加线程成功 workerAdded = true; } } finally { mainLock.unlock(); } // 添加线程成功 启动 设置启动标志 if (workerAdded) { t.start(); workerStarted = true; } } } finally { //添加工作线程失败 将Worker从Worker集合中删除,并且减少工作线程数 因为上面对工作线程数+1了 if (! workerStarted) addWorkerFailed(w); } return workerStarted; } private boolean compareAndIncrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect + 1); } private void addWorkerFailed(Worker w) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { if (w != null) workers.remove(w); decrementWorkerCount(); tryTerminate(); } finally { mainLock.unlock(); } } private void decrementWorkerCount() { do {} while (! compareAndDecrementWorkerCount(ctl.get())); } //执行任务 final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // 允许中断 boolean completedAbruptly = true; try { //当前任务不为空或者可以从阻塞队列里面获取到任务 while (task != null || (task = getTask()) != null) { w.lock(); //(线程池状态为stop || (线程中断了 并且 线程池准备stop)) && 当前线程没有中断 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt();//中断线程 try { beforeExecute(wt, task); Throwable thrown = null; try { task.run();//执行任务 } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { //置空任务 任务完成数加1 task = null; w.completedTasks++; w.unlock(); } } //获取不到任务了 completedAbruptly = false; } finally { //销毁工作线程 processWorkerExit(w, completedAbruptly); } } //获取任务方法 private Runnable getTask() { boolean timedOut = false; for (;;) { int c = ctl.get(); int rs = runStateOf(c); // 阻塞队列为空 if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // 允许核心线程超时 或者 当前线程数大于核心线程数(有非核心线程) boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { //获取任务 Runnable r = timed ? //允许核心线程超时 或者 有非核心线程 达到存活时间没有获取到任务也会返回 //再次循环 上面的判断队列为空的条件 会让方法返回空 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();//这里会阻塞 保持核心线程 if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } } private static boolean runStateAtLeast(int c, int s) { return c >= s; } private boolean compareAndDecrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect - 1); } private void processWorkerExit(Worker w, boolean completedAbruptly) { if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //增加完成任务数量 completedTaskCount += w.completedTasks; //移除Worker workers.remove(w); } finally { mainLock.unlock(); } //终止线程 tryTerminate(); int c = ctl.get(); if (runStateLessThan(c, STOP)) { //检查是不是因为获取不到任务 进入该方法的 if (!completedAbruptly) { //线程获取不到任务,就是该消亡线程了 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; if (min == 0 && ! workQueue.isEmpty()) min = 1; if (workerCountOf(c) >= min) return; // replacement not needed } //给线程池保存一个工作线程 addWorker(null, false); } } final void tryTerminate() { for (;;) { int c = ctl.get(); if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; if (workerCountOf(c) != 0) { // Eligible to terminate interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { terminated(); } finally { ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS } } //内部类 private final class Worker extends AbstractQueuedSynchronizer implements Runnable { // 工作线程 final Thread thread; // 工作任务 Runnable firstTask; // 完成的任务数量 volatile long completedTasks; Worker(Runnable firstTask) { setState(-1); // aqs的状态 防止中断 this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } // 执行任务 活跃线程执行的任务在这里 public void run() { runWorker(this); } // 0 未上锁, 1 上锁了 protected boolean isHeldExclusively() { return getState() != 0; } protected boolean tryAcquire(int unused) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() { Thread t; if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } }
这篇关于Java线程池源码分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-23Springboot应用的多环境打包入门
- 2024-11-23Springboot应用的生产发布入门教程
- 2024-11-23Python编程入门指南
- 2024-11-23Java创业入门:从零开始的编程之旅
- 2024-11-23Java创业入门:新手必读的Java编程与创业指南
- 2024-11-23Java对接阿里云智能语音服务入门详解
- 2024-11-23Java对接阿里云智能语音服务入门教程
- 2024-11-23JAVA对接阿里云智能语音服务入门教程
- 2024-11-23Java副业入门:初学者的简单教程
- 2024-11-23JAVA副业入门:初学者的实战指南