算法第三章上机实验报告

2021/10/26 14:12:03

本文主要是介绍算法第三章上机实验报告,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1 问题描述

7-3 最低通行费 (25 分)

一个商人穿过一个N×N的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间1个小方格,都要花费1个单位时间。商人必须在(2N-1)个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入格式:

第一行是一个整数,表示正方形的宽度N (1≤N<100);

后面N行,每行N个不大于100的整数,为网格上每个小方格的费用。

输出格式:

至少需要的费用。

输入样例:

5
1  4  6  8  10 
2  5  7  15 17 
6  8  9  18 20 
10 11 12 19 21 
20 23 25 29 33

输出样例:

109

2 算法描述

采用动态规划算法,该题要知道(n,n)的解就要知道(n,n-1)的解和(n-1,n)的解,进行比较取小

    for(int i=1;i<=n;i++)               //A
    {
        p[i][1]=p[i-1][1]+price[i][1];
    }

    for(int j=1;j<=n;j++)              //B
    {
        p[1][j]=p[1][j-1]+price[1][j];     //A、B代码段是对一直往右走和一直往下走的初始化,防止动态规划时取min出错
    }   
    
    for(int i=2;i<=n;i++)
    {
        for(int  j=2;j<=n;j++)
        {
            p[i][j]=min(p[i-1][j]+price[i][j],p[i][j-1]+price[i][j]);//动态规划求最小值
        }
            
    }

3 问题求解:

3.1 根据最优子结构性质,列出递归方程式

b[i][j] = min(b[i-1][j]+a[i][j],b[i][j-1]+a[i][j])

3.2 给出填表法中表的维度、填表范围和填表顺序。

由于需要知道这个点的左边和上边,表的维度即为n*n

每一个问题都需要左子问题和上子问题的解,填表范围也为n^2

根据其递归方程可知,填表顺序由上至下、由左往右。

3.3 分析该算法的时间和空间复杂度

空间复杂度为O(n^2)

时间复杂度也为O(n^2)

4 心得体会

动态规划要从子问题和问题之间的关系进行入手。

一个问题可能由多个子问题通过不同的条件判断到达,从而写出递归方程式。

递归方程式写出问题基本上就得到了解决,只差细节上的实现。

其中重叠子问题的解决方法为 建立规划表,从而减少运算、提高效率



这篇关于算法第三章上机实验报告的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程