遗传算法解决TSP问题
2021/10/27 14:10:19
本文主要是介绍遗传算法解决TSP问题,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
选用python和matplotlib.pyplot图形化
import math import copy import random import numpy as np import matplotlib.pyplot as plt from numpy.lib.function_base import average class TSP(): citys_position=[] #城市坐标 population=[] #种群数组 fitness=[] #适应度数组 citys_size=10 #城市个数 population_size=100 #种群大小 rate_crossover=0.1 #交叉率 rate_mutation=0.01 #变异率 iteration_num=200 #最大迭代次数 best_dist=0x3f3f3f3f3f #记录最优距离 dist_list=[] #记录当前距离 best_dist_list=[] #记录最优距离 best_individual=[] #记录目前最优旅行方案 #加载城市坐标 def load_citys_position(self): self.citys_position=[ [18,54],[87,76],[74,78],[71,71],[25,38], [58,35],[4,50],[13,40],[18,40],[24,42], # [71,44],[64,60],[68,58],[83,69],[58,69], # [54,62],[51,67],[37,84],[41,94],[2,99] ] #加载初始种群 def load_population(self): for i in range(self.population_size): temp=[] while len(temp)<self.citys_size: ite = random.randint(0,self.citys_size-1) if ite not in temp: temp.append(ite) self.population.append([]) for j in temp: self.population[i].append(j) # print(self.population) #初始化 def __init__(self): self.load_citys_position() self.load_population() self.get_fitness() self.choice() #城市距离-染色体权值 def city_dist(self,i,j): x=self.citys_position[i] y=self.citys_position[j] return math.sqrt(pow(x[0]-y[0],2)+pow(x[1]-y[1],2)) #种群距离集 def population_dist(self): now_dist_list=[] for i in range(len(self.population)): now_dist=0 for j in range(1,len(self.population[i])): now_dist+=self.city_dist(self.population[i][j],self.population[i][j-1]) now_dist_list.append(now_dist) return now_dist_list #适应度函数 def get_fitness(self): self.dist_list=self.population_dist() now_best_dist=min(self.dist_list) now_best_dist_index=self.dist_list.index(now_best_dist) now_fitness=[] if now_best_dist<self.best_dist: self.best_dist_list.append(now_best_dist) self.best_dist=now_best_dist self.best_individual=self.population[now_best_dist_index] else : self.best_dist_list.append(self.best_dist) for i in range(len(self.dist_list)): now_fitness.append(self.best_dist/self.dist_list[i]) self.fitness=now_fitness # print("self.best_dist:",self.best_dist," now_dist_list:",now_dist_list) # print("self.fitness:",self.fitness) #变异 def mutation(self): for i in range(len(self.population)): now_rate=random.random() if(now_rate<self.rate_mutation): #随机出两个点进行片段翻转 index1=random.randint(0,len(self.population[i])-1) index2=random.randint(0,len(self.population[i])-1) if index1>index2: temp=index1 index1=index2 index2=temp self.population[i][index1:index2]=list(reversed(self.population[i][index1:index2])) #交叉互换 def crossover(self): last_index=-1; for i in range(len(self.population)): now_rate=random.random(); if(now_rate<self.rate_crossover): if(last_index==-1): last_index=i else : #顺序交叉,保留前一个染色体的中间段,交换两端 index1=random.randint(0,len(self.population[last_index])-1) index2=random.randint(0,len(self.population[last_index])-1) if index1>index2: temp=index1 index1=index2 index2=temp temp_list=[] #取出中间段 for j in range(index1,index2+1): temp_list.append(self.population[last_index][j]) next_gen=[] #存储交叉互换后的基因 index_temp=0 for j in range(len(self.population[i])): if self.population[i][j] not in temp_list: next_gen.append(self.population[i][j]) else : next_gen.append(temp_list[index_temp]) index_temp+=1 self.population[last_index]=next_gen #赋新基因 last_index=i; #选择函数 def choice(self): #最优解覆盖 for i in range(len(self.fitness)): if self.fitness[i]<0.5: # print("self.fitness[i]:",self.fitness[i]," self.dist_list[i]:",self.dist_list[i]," best_dist:",self.best_dist) # print("self.population[i]:",self.population[i],"self.best_individual:",self.best_individual) # print(" ") self.population[i]=self.best_individual self.fitness[i]=1 #进化,主函数 def evolution(self): now_iteration_num=0 while now_iteration_num<self.iteration_num: now_iteration_num+=1 self.crossover() self.mutation() self.get_fitness() self.choice() #可视化数据 def plot_show(self): print("self.best_dist",end=":") print(self.best_dist) print("self.best_individual",end=":") print(self.best_individual) x1=[] y1=[] x2=[] y2=[] for i in range(len(self.citys_position)): x1.append(self.citys_position[i][0]) y1.append(self.citys_position[i][1]) for i in range(len(self.best_individual)): x2.append(self.citys_position[self.best_individual[i]][0]) y2.append(self.citys_position[self.best_individual[i]][1]) print("x1:",end="") print(x1) print("y1:",end="") print(y1) print("x2:",end="") print(x2) print("y2:",end="") print(y2) plt.title("citys_position") plt.scatter(x1,y1,color='r',marker='o' ); #画点 plt.figure(); plt.title("best_route") plt.plot(x2,y2,color='r',marker='o' ); #画点 for i in range(len(x2)): plt.text(x2[i],y2[i],i+1) plt.figure(); plt.title("best_dist_change") plt.plot(self.best_dist_list,color='r') plt.show() def main(): tsp=TSP() tsp.evolution() tsp.plot_show() if __name__ == '__main__': main()
这篇关于遗传算法解决TSP问题的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-102025 蛇年,J 人直播带货内容审核团队必备的办公软件有哪 6 款?
- 2025-01-10高效运营背后的支柱:文档管理优化指南
- 2025-01-10年末压力山大?试试优化你的文档管理
- 2025-01-10跨部门协作中的进度追踪重要性解析
- 2025-01-10总结 JavaScript 中的变体函数调用方式
- 2025-01-10HR团队如何通过数据驱动提升管理效率?6个策略
- 2025-01-10WBS实战指南:如何一步步构建高效项目管理框架?
- 2025-01-10实现精准执行:团队协作新方法
- 2025-01-10如何使用工具提升活动策划团队的工作效率?几个必备工具推荐
- 2025-01-10WiX 标签使用介绍:打造专业安装程序的利器