1114-诗词收集&藏头诗生成&Snownlp正负情感分析
2021/11/14 23:45:33
本文主要是介绍1114-诗词收集&藏头诗生成&Snownlp正负情感分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
诗词收集改进
改进
对formal形式为:七言,七言绝句,七言律诗的诗词进行收集
import pandas as pd import re #获取指定文件夹下的excel import os def get_filename(path,filetype): # 输入路径、文件类型例如'.xlsx' name = [] for root,dirs,files in os.walk(path): for i in files: if os.path.splitext(i)[1]==filetype: name.append(i) return name # 输出由有后缀的文件名组成的列表 def read(): file = 'data/' list = get_filename(file, '.xlsx') qi_list=[] for it in list: newfile =file+it print(newfile) # 获取诗词内容 data = pd.read_excel(newfile) formal=data.formal content=data.content for i in range(len(formal)): fom=formal[i] if fom=='七言绝句': text=content[i].replace('\n','') text_list=re.split('[,。]',text) #print(text_list) if len(text_list)==9 and len(text_list[len(text_list)-1])==0: f = True for i in range(len(text_list)-1): it=text_list[i] #print(len(it)) if len(it)!=7 or it.find('□')!=-1: f=False break if f: #print(text) qi_list.append(text[:32]) qi_list.append(text[32:64]) elif fom=='七言': text = content[i].replace('\n', '') text_list = re.split('[,。]', text) print(text_list) if len(text_list)==5 and len(text_list[len(text_list)-1])==0: f = True for i in range(len(text_list)-1): it=text_list[i] print(len(it)) if len(it)!=7 or it.find('□')!=-1: f=False break if f: #print(text) qi_list.append(text[:32]) elif fom=='七言律诗': text = content[i].replace('\n', '') text_list = re.split('[,。]', text) print(text_list) if len(text_list)==17 and len(text_list[len(text_list)-1])==0: f = True for i in range(len(text_list)-1): it=text_list[i] print(len(it)) if len(it)!=7 or it.find('□')!=-1: f=False break if f: #print(text) qi_list.append(text[:32]) qi_list.append(text[32:64]) qi_list.append(text[64:96]) qi_list.append(text[96:128]) print(qi_list) return qi_list def write(content): with open("./poem_train/qi_jueju.txt", "w", encoding="utf-8") as f: for it in content: f.write(it) # 自带文件关闭功能,不需要再写f.close() f.write("\n") if __name__ == '__main__': content=read() write(content)
成果
数据集扩充到4万条
藏头诗生成
代码
import torch import torch.nn as nn import numpy as np from gensim.models.word2vec import Word2Vec import pickle from torch.utils.data import Dataset,DataLoader import os def split_poetry(file='qi_jueju.txt'): all_data=open(file,"r",encoding="utf-8").read() all_data_split=" ".join(all_data) with open("split.txt","w",encoding='utf-8') as f: f.write(all_data_split) def train_vec(split_file='split.txt',org_file='qi_jueju.txt'): #word2vec模型 vec_params_file="vec_params.pkl" #判断切分文件是否存在,不存在进行切分 if os.path.exists(split_file)==False: split_poetry() #读取切分的文件 split_all_data=open(split_file,"r",encoding="utf-8").read().split("\n") #读取原始文件 org_data=open(org_file,"r",encoding="utf-8").read().split("\n") #存在模型文件就去加载,返回数据即可 if os.path.exists(vec_params_file): return org_data,pickle.load(open(vec_params_file,"rb")) #词向量大小:vector_size,构造word2vec模型,字维度107,只要出现一次就统计该字,workers=6同时工作 embedding_num=128 model=Word2Vec(split_all_data,vector_size=embedding_num,min_count=1,workers=6) #保存模型 pickle.dump((model.syn1neg,model.wv.key_to_index,model.wv.index_to_key),open(vec_params_file,"wb")) return org_data,(model.syn1neg,model.wv.key_to_index,model.wv.index_to_key) class MyDataset(Dataset): #数据打包 #加载所有数据 #存储和初始化变量 def __init__(self,all_data,w1,word_2_index): self.w1=w1 self.word_2_index=word_2_index self.all_data=all_data #获取一条数据,并做处理 def __getitem__(self, index): a_poetry_words = self.all_data[index] a_poetry_index = [self.word_2_index[word] for word in a_poetry_words] xs_index = a_poetry_index[:-1] ys_index = a_poetry_index[1:] #取出31个字,每个字对应107维度向量,【31,107】 xs_embedding=self.w1[xs_index] return xs_embedding,np.array(ys_index).astype(np.int64) #获取数据总长度 def __len__(self): return len(self.all_data) class Mymodel(nn.Module): def __init__(self,embedding_num,hidden_num,word_size): super(Mymodel, self).__init__() self.embedding_num=embedding_num self.hidden_num = hidden_num self.word_size = word_size #num_layer:两层,代表层数,出来后的维度[5,31,64],设置hidden_num=64 self.lstm=nn.LSTM(input_size=embedding_num,hidden_size=hidden_num,batch_first=True,num_layers=2,bidirectional=False) #做一个随机失活,防止过拟合,同时可以保持生成的古诗不唯一 self.dropout=nn.Dropout(0.3) #做一个flatten,将维度合并【5*31,64】 self.flatten=nn.Flatten(0,1) #加一个线性层:[64,词库大小] self.linear=nn.Linear(hidden_num,word_size) #交叉熵 self.cross_entropy=nn.CrossEntropyLoss() def forward(self,xs_embedding,h_0=None,c_0=None): xs_embedding=xs_embedding.to(device) if h_0==None or c_0==None: #num_layers,batch_size,hidden_size h_0=torch.tensor(np.zeros((2,xs_embedding.shape[0],self.hidden_num),np.float32)) c_0 = torch.tensor(np.zeros((2, xs_embedding.shape[0], self.hidden_num),np.float32)) h_0=h_0.to(device) c_0=c_0.to(device) hidden,(h_0,c_0)=self.lstm(xs_embedding,(h_0,c_0)) hidden_drop=self.dropout(hidden) flatten_hidden=self.flatten(hidden_drop) pre=self.linear(flatten_hidden) return pre,(h_0,c_0) #给出开头一个字,自动生成诗 def generate_poetry_auto(res): result=res #随机产生第一个字的下标 # word_index=np.random.randint(0,word_size,1)[0] # result += index_2_word[word_index] word_index=word_2_index[res] h_0 = torch.tensor(np.zeros((2, 1, hidden_num), np.float32)) c_0 = torch.tensor(np.zeros((2, 1, hidden_num), np.float32)) for i in range(31): word_embedding=torch.tensor(w1[word_index].reshape(1,1,-1)) pre,(h_0,c_0)=model(word_embedding,h_0,c_0) word_index=int(torch.argmax(pre)) result+=index_2_word[word_index] print(result) #藏头诗 def cang(res): result='' punctuation_list = [",", "。", ",", "。"] for i in range(len(res)): result+=res[i] word_index = word_2_index[res[i]] h_0 = torch.tensor(np.zeros((2, 1, hidden_num), np.float32)) c_0 = torch.tensor(np.zeros((2, 1, hidden_num), np.float32)) for j in range(6): word_embedding = torch.tensor(w1[word_index].reshape(1, 1, -1)) pre, (h_0, c_0) = model(word_embedding, h_0, c_0) word_index = int(torch.argmax(pre)) result += index_2_word[word_index] result+=punctuation_list[i] print(result) if __name__ == '__main__': device="cuda" if torch.cuda.is_available() else "cpu" #print(device) #源数据小了,batch不能太大 batch_size=128 all_data,(w1,word_2_index,index_2_word)=train_vec() dataset=MyDataset(all_data,w1,word_2_index) dataloader=DataLoader(dataset,batch_size=batch_size,shuffle=True) epoch=1000 word_size , embedding_num=w1.shape lr=0.003 hidden_num=128 model_result_file='model_lstm.pkl' #测试代码 if os.path.exists(model_result_file): model=pickle.load(open(model_result_file, "rb")) # 开头字 # result=input("请输入一个字:") #generate_poetry_auto(result) #藏头诗 result=input("请输入四个字:") cang(result)
结果
Snownlp正负情感分析
自定义数据集训练
源数据格式
三列:cat,label,review,我们只要后两列
先获取训练数据与测试数据
根据label标签,划分出积极和消极两种训练数据,保存到对应的csv进行训练
from snownlp import sentiment import pandas as pd def train_model(): data=pd.read_csv(r"DataSet.csv", header=0) train=data.iloc[:40000,[1,2]] test=data.iloc[40000:,[1,2]] train_neg=train.iloc[:,1][train.label==0] train_pos=train.iloc[:,1][train.label==1] train_neg.to_csv(r"./neg.csv",index=0,header=0) train_pos.to_csv(r"./pos.csv",index=0,header=0) test.to_csv(r"./test.csv",index=0,columns=['label','review']) sentiment.train(r'neg.csv', r'pos.csv') sentiment.save(r'sentiment.marshal') if __name__ == '__main__': train_model()
测试集效果
对测试集数据提取review与label两列
用训练好的模型去评估,在于正确的label比对
其中:需要注意更换自己模型进行训练,需要找到该文件下的init,将默认的模型更换
import pandas as pd from snownlp import SnowNLP from snownlp import sentiment if __name__ == '__main__': test=pd.read_csv(r"test.csv") review_list=[review for review in test['review']] label_list=[label for label in test['label']] list_test=[(label,review) for label,review in list(zip(label_list,review_list)) if type(review)!=float] for j in list_test: print(j[1],j[0],SnowNLP(j[1]).sentiments) senti=[SnowNLP(review).sentiments for label,review in list_test] newsenti=[] for i in senti: #预测结果为pos的概率,大于0.6我们认定为积极评价 if(i>=0.6): newsenti.append(1) else: newsenti.append(0) counts=0 for i in range(len(list_test)): if(newsenti[i]==list_test[i][0]): counts+=1 accuracy=float(counts)/float(len(list_test)) print("准确率为:%.2f" %accuracy)
结果如下:
结语
摸索了情感分析后,它的整体流程大致这样,后续就要自己搭建模型进行情感分析
这篇关于1114-诗词收集&藏头诗生成&Snownlp正负情感分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-26大厂数据结构与算法教程:入门级详解
- 2024-12-26大厂算法与数据结构教程:新手入门指南
- 2024-12-26Python编程入门指南
- 2024-12-26数据结构高级教程:新手入门及初级提升指南
- 2024-12-26并查集入门教程:从零开始学会并查集
- 2024-12-26大厂数据结构与算法入门指南
- 2024-12-26大厂算法与数据结构入门教程
- 2024-12-26二叉树入门教程:轻松掌握基础概念与操作
- 2024-12-26初学者指南:轻松掌握链表
- 2024-12-26平衡树入门教程:轻松理解与应用