Kubernetes进程 Namespace 技术 Cgroups 技术
2021/11/18 7:10:18
本文主要是介绍Kubernetes进程 Namespace 技术 Cgroups 技术,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
容器技术的核心功能,就是通过约束和修改进程的动态表现,从而为其创造出一个“边界”。
对于 Docker 等大多数 Linux 容器来说,Cgroups 技术是用来制造约束的主要手段,而Namespace 技术则是用来修改进程视图的主要方法。
1.Namespace 机制
假设你已经有了一个 Linux 操作系统上的 Docker 项目在运行,比如我的环境是 Centos 7 和 Docker CE 18.05。
1.首先创建一个容器,并运行
docker run -it busybox /bin/sh
- -it 参数告诉了 Docker 项目在启动容器后,需要给我们分配一个文本输入 / 输出环境,也就是 TTY,跟容器的标准输入相关联,这样我们就可以和这个 Docker 容器进行交互了。
- /bin/sh 就是我们要在 Docker 容器里运行的程序
上面的指令的意思是:
请帮我启动一个容器,在容器里执行 /bin/sh,并且给我分配一个命令行终端跟这个容器交互; 这样,我的 Centos 7 机器就变成了一个宿主机,而一个运行着 /bin/sh 的容器,就跑在了这个宿主机里面
如果我们在容器里执行一下ps,会发现
PID USER TIME COMMAND 1 root 0:00 /bin/sh 10 root 0:00 ps
可以看到,我们在 Docker 里最开始执行的 /bin/sh,就是这个容器内部的第 1 号进程(PID=1),而这个容器里一共只有两个进程在运行。这就意味着,前面执行的 /bin/sh,以及我们刚刚执行的 ps,已经被 Docker 隔离在了一个跟宿主机完全不同的世界当中
本来,每当我们在宿主机上运行了一个 /bin/sh 程序,操作系统都会给它分配一个进程编号,比如 PID=100。
这个编号是进程的唯一标识,就像员工的工牌一样。所以 PID=100,可以粗略地理解为这个 /bin/sh 是我们公司里的第 100 号员工,而第 1 号员工就自然是比尔 · 盖茨这样统领全局的人物。
而现在,我们要通过 Docker 把这个 /bin/sh 程序运行在一个容器当中。这时候,Docker 就会在这个第 100 号员工入职时给他施一个“障眼法”,让他永远看不到前面的其他 99 个员工,更看不到比尔 · 盖茨。这样,他就会错误地以为自己就是公司里的第 1 号员工。
这种机制,其实就是对被隔离应用的进程空间做了手脚,使得这些进程只能看到重新计算过的进程编号,比如 PID=1。可实际上,他们在宿主机的操作系统里,还是原来的第 100 号进程。
这种技术,就是 Linux 里面的 Namespace 机制。
而 Namespace 的使用方式也非常有意思:它其实只是 Linux 创建新进程的一个可选参数。我们知道,在 Linux 系统中创建线程的系统调用是 clone(),比如
int pid = clone(main_function, stack_size, SIGCHLD, NULL);
这个系统调用就会为我们创建一个新的进程,并且返回它的进程号 pid。
而当我们用 clone() 系统调用创建一个新进程时,就可以在参数中指定 CLONE_NEWPID 参数,比如:
int pid = clone(main_function, stack_size, CLONE_NEWPID | SIGCHLD, NULL);
这时,新创建的这个进程将会“看到”一个全新的进程空间,在这个进程空间里,它的 PID 是 1。之所以说“看到”,是因为这只是一个“障眼法”,在宿主机真实的进程空间里,这个进程的 PID 还是真实的数值,比如 100。
当然,我们还可以多次执行上面的 clone() 调用,这样就会创建多个 PID Namespace,而每个 Namespace 里的应用进程,都会认为自己是当前容器里的第 1 号进程,它们既看不到宿主机里真正的进程空间,也看不到其他 PID Namespace 里的具体情况。
而除了我们刚刚用到的 PID Namespace,Linux 操作系统还提供了 Mount、UTS、IPC、Network 和 User 这些 Namespace,用来对各种不同的进程上下文进行“障眼法”操作。
比如,Mount Namespace,用于让被隔离进程只看到当前 Namespace 里的挂载点信息;Network Namespace,用于让被隔离进程看到当前 Namespace 里的网络设备和配置。
这,就是 Linux 容器最基本的实现原理了。 容器,其实是一种特殊的进程而已。
这幅图的左边,画出了虚拟机的工作原理。其中,名为 Hypervisor 的软件是虚拟机最主要的部分。它通过硬件虚拟化功能,模拟出了运行一个操作系统需要的各种硬件,比如 CPU、内存、I/O 设备等等。然后,它在这些虚拟的硬件上安装了一个新的操作系统,即 Guest OS。
这样,用户的应用进程就可以运行在这个虚拟的机器中,它能看到的自然也只有 Guest OS 的文件和目录,以及这个机器里的虚拟设备。这就是为什么虚拟机也能起到将不同的应用进程相互隔离的作用。
而这幅图的右边,则用一个名为 Docker Engine 的软件替换了 Hypervisor。这也是为什么,很多人会把 Docker 项目称为“轻量级”虚拟化技术的原因,实际上就是把虚拟机的概念套在了容器上。
在理解了 Namespace 的工作方式之后,你就会明白,跟真实存在的虚拟机不同,在使用 Docker 的时候,并没有一个真正的“Docker 容器”运行在宿主机里面。Docker 项目帮助用户启动的,还是原来的应用进程,只不过在创建这些进程时,Docker 为它们加上了各种各样的 Namespace 参数。
这时,这些进程就会觉得自己是各自 PID Namespace 里的第 1 号进程,只能看到各自 Mount Namespace 里挂载的目录和文件,只能访问到各自 Network Namespace 里的网络设备,就仿佛运行在一个个“容器”里面,与世隔绝。
上图的对比图不应该把 Docker Engine 或者任何容器管理工具放在跟 Hypervisor 相同的位置,因为它们并不像 Hypervisor 那样对应用进程的隔离环境负责,也不会创建任何实体的“容器”,真正对隔离环境负责的是宿主机操作系统本身
在这个下图里,我们应该把 Docker 画在跟应用同级别并且靠边的位置。这意味着,用户运行在容器里的应用进程,跟宿主机上的其他进程一样,都由宿主机操作系统统一管理,只不过这些被隔离的进程拥有额外设置过的 Namespace 参数。而 Docker 项目在这里扮演的角色,更多的是旁路式的辅助和管理工作
使用虚拟化技术作为应用沙盒,就必须要由 Hypervisor 来负责创建虚拟机,这
个虚拟机是真实存在的,并且它里面必须运行一个完整的 Guest OS 才能执行用户的应用
进程。这就不可避免地带来了额外的资源消耗和占用。
根据实验,一个运行着 CentOS 的 KVM 虚拟机启动后,在不做优化的情况下,虚拟机自
己就需要占用 100~200 MB 内存。此外,用户应用运行在虚拟机里面,它对宿主机操作系
统的调用就不可避免地要经过虚拟化软件的拦截和处理,这本身又是一层性能损耗,尤其对
计算资源、网络和磁盘 I/O 的损耗非常大。
而相比之下,容器化后的用户应用,却依然还是一个宿主机上的普通进程,这就意味着这些
因为虚拟化而带来的性能损耗都是不存在的;而另一方面,使用 Namespace 作为隔离手
段的容器并不需要单独的 Guest OS,这就使得容器额外的资源占用几乎可以忽略不计。
所以说,“敏捷”和“高性能”是容器相较于虚拟机最大的优势,也是它能够在 PaaS 这
种更细粒度的资源管理平台上大行其道的重要原因。
不过,有利就有弊,基于 Linux Namespace 的隔离机制相比于虚拟化技术也有很多不足之
处,其中最主要的问题就是:隔离得不彻底。
首先,既然容器只是运行在宿主机上的一种特殊的进程,那么多个容器之间使用的就还是同
一个宿主机的操作系统内核。
尽管你可以在容器里通过 Mount Namespace 单独挂载其他不同版本的操作系统文件,比
如 CentOS 或者 Ubuntu,但这并不能改变共享宿主机内核的事实。这意味着,如果你要
在 Windows 宿主机上运行 Linux 容器,或者在低版本的 Linux 宿主机上运行高版本的
Linux 容器,都是行不通的。
而相比之下,拥有硬件虚拟化技术和独立 Guest OS 的虚拟机就要方便得多了。最极端的
例子是,Microsoft 的云计算平台 Azure,实际上就是运行在 Windows 服务器集群上的,
但这并不妨碍你在它上面创建各种 Linux 虚拟机出来。
其次,在 Linux 内核中,有很多资源和对象是不能被 Namespace 化的,最典型的例子就
是:时间。
这就意味着,如果你的容器中的程序使用 settimeofday(2) 系统调用修改了时间,整个宿
主机的时间都会被随之修改,这显然不符合用户的预期。相比于在虚拟机里面可以随便折腾
的自由度,在容器里部署应用的时候,“什么能做,什么不能做”,就是用户必须考虑的一
个问题。
此外,由于上述问题,尤其是共享宿主机内核的事实,容器给应用暴露出来的攻击面是相当
大的,应用“越狱”的难度自然也比虚拟机低得多。
更为棘手的是,尽管在实践中我们确实可以使用 Seccomp 等技术,对容器内部发起的所有
系统调用进行过滤和甄别来进行安全加固,但这种方法因为多了一层对系统调用的过滤,一
定会拖累容器的性能。何况,默认情况下,谁也不知道到底该开启哪些系统调用,禁止哪些
系统调用。
这篇关于Kubernetes进程 Namespace 技术 Cgroups 技术的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-15在Kubernetes (k8s) 中搭建三台 Nginx 服务器怎么实现?-icode9专业技术文章分享
- 2024-11-05基于Kubernetes的自定义AWS云平台搭建指南
- 2024-11-05基于Kubernetes Gateway API的现代流量管理方案
- 2024-11-05在Kubernetes上部署你的第一个应用:Nginx服务器
- 2024-11-05利用拓扑感知路由控制Kubernetes中的流量
- 2024-11-05Kubernetes中的层次命名空间:更灵活的资源管理方案
- 2024-11-055分钟上手 Kubernetes:精简实用的 Kubectl 命令速查宝典!
- 2024-10-30K8s 容器的定向调度与亲和性
- 2024-10-28云原生周刊:K8s未来三大发展方向 丨2024.10.28
- 2024-10-25亚马逊弹性Kubernetes服务(EKS)实战:轻松搭建Kubernetes平台