第22章:针对Cloze Tests基于Attention机制的的MRC领域开山之作:Teaching Machines to Read and Comprehend架构设计及完整源码实现

2021/11/26 17:12:27

本文主要是介绍第22章:针对Cloze Tests基于Attention机制的的MRC领域开山之作:Teaching Machines to Read and Comprehend架构设计及完整源码实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1,对Text提供精细化的语言理解能力和推理能力的MRC为何需要Neural Networks和Attention机制的支持?

2,基于大规模训练数据集的集特征工程和分类于一体的深度学习MRC

3,数据集结构分析

4,Two-layer Deep LSTM Reader的Input和Output分析

5,Two-layer Deep LSTM Reader中article和question的Concatenation操作

6,Two-layer Deep LSTM Reader中的Embedding Layer解析

7,具有Attention功能的Two-layer Deep LSTM Reader架构解析

8,Two-layer Deep LSTM Reader的classification解析

9,Attentive Reader的Input时候对Document和Question分别作LSTM建模

10,Attentive Reader使用加法操作实现Attention机制进行Classification操作

11,Impatient Reader的Output中的Attention数学原理和操作解析

12,对模型复杂度及数据量的最佳实践思考

13,为何Attention机制在阅读理解中是有效的?数学原理和工程实践

14,CNN Daily Mail数据Padding、Batch等预处理操作

15,QADataset完整源码解析

16,QAIterator完整源码解析

17,Context和Question进行Concatenation操作完整源码解析

18,Deep LSTM中的Word Embedding Layer实现

19,Deep LSTM中的Contextual Embedding Layer实现

20,Deep LSTM中的Output Layer实现

21,Deep LSTM中的Dropout

22,Deep LSTM中的Modeling Layer源码实现

23,AttentiveReader中的Word Embedding Layer实现

24,AttentiveReader中的Contextual Embedding Layer实现

25,AttentiveReader中的Modeling Layer实现

26,AttentiveReader中的Attention机制实现

27,ImpatientReader中的Embedding Layers实现

28,ImpatientReader中的Mdoeling Layer实现

29,ImpatientReader中的Attention源码完整实现

30,training方法的源码完整实现

31,对整个整个算法完整源码实现的调试及分析



这篇关于第22章:针对Cloze Tests基于Attention机制的的MRC领域开山之作:Teaching Machines to Read and Comprehend架构设计及完整源码实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!


扫一扫关注最新编程教程