【人工智能导论:模型与算法】信息熵 交叉熵
2021/11/27 11:12:00
本文主要是介绍【人工智能导论:模型与算法】信息熵 交叉熵,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
【人工智能导论:模型与算法】
P124 交叉熵;梯度下降法;学习率
P127 信息熵;信息增益
这几个知识点需要科普一下。
交叉熵:度量两个概率分布间的差异性信息。
信息熵:系统有序化程度的一个度量。香农用信息熵的概念来描述信源的不确定度。
信息熵:表示随机变量的不确定性。
条件熵:在一个条件下,随机变量的不确定性。
信息增益:熵 - 条件熵。表示在一个条件下,信息不确定性减少的程度。
信息增益到底怎么理解呢? - 知乎 (zhihu.com)
这篇关于【人工智能导论:模型与算法】信息熵 交叉熵的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-22程序员出海做 AI 工具:如何用 similarweb 找到最佳流量渠道?
- 2024-12-20自建AI入门:生成模型介绍——GAN和VAE浅析
- 2024-12-20游戏引擎的进化史——从手工编码到超真实画面和人工智能
- 2024-12-20利用大型语言模型构建文本中的知识图谱:从文本到结构化数据的转换指南
- 2024-12-20揭秘百年人工智能:从深度学习到可解释AI
- 2024-12-20复杂RAG(检索增强生成)的入门介绍
- 2024-12-20基于大型语言模型的积木堆叠任务研究
- 2024-12-20从原型到生产:提升大型语言模型准确性的实战经验
- 2024-12-20啥是大模型1
- 2024-12-20英特尔的 Lunar Lake 计划:一场未竟的承诺