【Python100天学习笔记】Day17 数据结构与算法
2021/12/4 20:18:45
本文主要是介绍【Python100天学习笔记】Day17 数据结构与算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
数据结构和算法
-
算法:解决问题的方法和步骤
-
评价算法的好坏:渐近时间复杂度和渐近空间复杂度。
-
渐近时间复杂度的大O标记:
- - 常量时间复杂度 - 布隆过滤器 / 哈希存储
- - 对数时间复杂度 - 折半查找(二分查找)
- - 线性时间复杂度 - 顺序查找 / 计数排序
- - 对数线性时间复杂度 - 高级排序算法(归并排序、快速排序)
- - 平方时间复杂度 - 简单排序算法(选择排序、插入排序、冒泡排序)
- - 立方时间复杂度 - Floyd算法 / 矩阵乘法运算
- - 几何级数时间复杂度 - 汉诺塔
- - 阶乘时间复杂度 - 旅行经销商问题 - NPC
-
排序算法(选择、冒泡和归并)和查找算法(顺序和折半)
def select_sort(items, comp=lambda x, y: x < y): """简单选择排序""" items = items[:] for i in range(len(items) - 1): min_index = i for j in range(i + 1, len(items)): if comp(items[j], items[min_index]): min_index = j items[i], items[min_index] = items[min_index], items[i] return items
def bubble_sort(items, comp=lambda x, y: x > y): """冒泡排序""" items = items[:] for i in range(len(items) - 1): swapped = False for j in range(i, len(items) - 1 - i): if comp(items[j], items[j + 1]): items[j], items[j + 1] = items[j + 1], items[j] swapped = True if not swapped: break return items
def bubble_sort(items, comp=lambda x, y: x > y): """搅拌排序(冒泡排序升级版)""" items = items[:] for i in range(len(items) - 1): swapped = False for j in range(i, len(items) - 1 - i): if comp(items[j], items[j + 1]): items[j], items[j + 1] = items[j + 1], items[j] swapped = True if swapped: swapped = False for j in range(len(items) - 2 - i, i, -1): if comp(items[j - 1], items[j]): items[j], items[j - 1] = items[j - 1], items[j] swapped = True if not swapped: break return items
def merge(items1, items2, comp=lambda x, y: x < y): """合并(将两个有序的列表合并成一个有序的列表)""" items = [] index1, index2 = 0, 0 while index1 < len(items1) and index2 < len(items2): if comp(items1[index1], items2[index2]): items.append(items1[index1]) index1 += 1 else: items.append(items2[index2]) index2 += 1 items += items1[index1:] items += items2[index2:] return items def merge_sort(items, comp=lambda x, y: x < y): return _merge_sort(list(items), comp) def _merge_sort(items, comp): """归并排序""" if len(items) < 2: return items mid = len(items) // 2 left = _merge_sort(items[:mid], comp) right = _merge_sort(items[mid:], comp) return merge(left, right, comp)
def seq_search(items, key): """顺序查找""" for index, item in enumerate(items): if item == key: return index return -1
def bin_search(items, key): """折半查找""" start, end = 0, len(items) - 1 while start <= end: mid = (start + end) // 2 if key > items[mid]: start = mid + 1 elif key < items[mid]: end = mid - 1 else: return mid return -1
-
常用算法:
- 穷举法 - 又称为暴力破解法,对所有的可能性进行验证,直到找到正确答案。
- 贪婪法 - 在对问题求解时,总是做出在当前看来
- 最好的选择,不追求最优解,快速找到满意解。
- 分治法 - 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到可以直接求解的程度,最后将子问题的解进行合并得到原问题的解。
- 回溯法 - 回溯法又称为试探法,按选优条件向前搜索,当搜索到某一步发现原先选择并不优或达不到目标时,就退回一步重新选择。
- 动态规划 - 基本思想也是将待求解问题分解成若干个子问题,先求解并保存这些子问题的解,避免产生大量的重复运算。
穷举法例子:百钱百鸡和五人分鱼。
# 公鸡5元一只 母鸡3元一只 小鸡1元三只 # 用100元买100只鸡 问公鸡/母鸡/小鸡各多少只 for x in range(20): for y in range(33): z = 100 - x - y if 5 * x + 3 * y + z // 3 == 100 and z % 3 == 0: print(x, y, z) # A、B、C、D、E五人在某天夜里合伙捕鱼 最后疲惫不堪各自睡觉 # 第二天A第一个醒来 他将鱼分为5份 扔掉多余的1条 拿走自己的一份 # B第二个醒来 也将鱼分为5份 扔掉多余的1条 拿走自己的一份 # 然后C、D、E依次醒来也按同样的方式分鱼 问他们至少捕了多少条鱼 fish = 6 while True: total = fish enough = True for _ in range(5): if (total - 1) % 5 == 0: total = (total - 1) // 5 * 4 else: enough = False break if enough: print(fish) break fish += 5
贪婪法例子:假设小偷有一个背包,最多能装20公斤赃物,他闯入一户人家,发现如下表所示的物品。很显然,他不能把所有物品都装进背包,所以必须确定拿走哪些物品,留下哪些物品。
名称 价格(美元) 重量(kg) 电脑 200 20 收音机 20 4 钟 175 10 花瓶 50 2 书 10 1 油画 90 9 """ 贪婪法:在对问题求解时,总是做出在当前看来是最好的选择,不追求最优解,快速找到满意解。 输入: 20 6 电脑 200 20 收音机 20 4 钟 175 10 花瓶 50 2 书 10 1 油画 90 9 """ class Thing(object): """物品""" def __init__(self, name, price, weight): self.name = name self.price = price self.weight = weight @property def value(self): """价格重量比""" return self.price / self.weight def input_thing(): """输入物品信息""" name_str, price_str, weight_str = input().split() return name_str, int(price_str), int(weight_str) def main(): """主函数""" max_weight, num_of_things = map(int, input().split()) all_things = [] for _ in range(num_of_things): all_things.append(Thing(*input_thing())) all_things.sort(key=lambda x: x.value, reverse=True) total_weight = 0 total_price = 0 for thing in all_things: if total_weight + thing.weight <= max_weight: print(f'小偷拿走了{thing.name}') total_weight += thing.weight total_price += thing.price print(f'总价值: {total_price}美元') if __name__ == '__main__': main()
分治法例子:快速排序。
""" 快速排序 - 选择枢轴对元素进行划分,左边都比枢轴小右边都比枢轴大 """ def quick_sort(items, comp=lambda x, y: x <= y): items = list(items)[:] _quick_sort(items, 0, len(items) - 1, comp) return items def _quick_sort(items, start, end, comp): if start < end: pos = _partition(items, start, end, comp) _quick_sort(items, start, pos - 1, comp) _quick_sort(items, pos + 1, end, comp) def _partition(items, start, end, comp): pivot = items[end] i = start - 1 for j in range(start, end): if comp(items[j], pivot): i += 1 items[i], items[j] = items[j], items[i] items[i + 1], items[end] = items[end], items[i + 1] return i + 1
回溯法例子:骑士巡逻。
""" 递归回溯法:叫称为试探法,按选优条件向前搜索,当搜索到某一步,发现原先选择并不优或达不到目标时,就退回一步重新选择,比较经典的问题包括骑士巡逻、八皇后和迷宫寻路等。 """ import sys import time SIZE = 5 total = 0 def print_board(board): for row in board: for col in row: print(str(col).center(4), end='') print() def patrol(board, row, col, step=1): if row >= 0 and row < SIZE and \ col >= 0 and col < SIZE and \ board[row][col] == 0: board[row][col] = step if step == SIZE * SIZE: global total total += 1 print(f'第{total}种走法: ') print_board(board) patrol(board, row - 2, col - 1, step + 1) patrol(board, row - 1, col - 2, step + 1) patrol(board, row + 1, col - 2, step + 1) patrol(board, row + 2, col - 1, step + 1) patrol(board, row + 2, col + 1, step + 1) patrol(board, row + 1, col + 2, step + 1) patrol(board, row - 1, col + 2, step + 1) patrol(board, row - 2, col + 1, step + 1) board[row][col] = 0 def main(): board = [[0] * SIZE for _ in range(SIZE)] patrol(board, SIZE - 1, SIZE - 1) if __name__ == '__main__': main()
动态规划例子:子列表元素之和的最大值。
说明:子列表指的是列表中索引(下标)连续的元素构成的列表;列表中的元素是int类型,可能包含正整数、0、负整数;程序输入列表中的元素,输出子列表元素求和的最大值,例如:
输入:1 -2 3 5 -3 2
输出:8
输入:0 -2 3 5 -1 2
输出:9
输入:-9 -2 -3 -5 -3
输出:-2
def main(): items = list(map(int, input().split())) overall = partial = items[0] for i in range(1, len(items)): partial = max(items[i], partial + items[i]) overall = max(partial, overall) print(overall) if __name__ == '__main__': main()
说明:这个题目最容易想到的解法是使用二重循环,但是代码的时间性能将会变得非常的糟糕。使用动态规划的思想,仅仅是多用了两个变量,就将原来 O ( N 2 ) O(N^2) O(N2)复杂度的问题变成了 O ( N ) O(N) O(N)。
这篇关于【Python100天学习笔记】Day17 数据结构与算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-11-02Python编程基础
- 2024-11-01Python 基础教程
- 2024-11-01用Python探索可解与不可解方程的问题
- 2024-11-01Python编程入门指南
- 2024-11-01Python编程基础知识
- 2024-11-01Python编程基础
- 2024-10-31Python基础入门:理解变量与数据类型
- 2024-10-30Python股票自动化交易资料详解与实战指南
- 2024-10-30Python入行:新手必读的Python编程入门指南
- 2024-10-30Python入行:初学者必备的编程指南