JDK1.8 Steam()常用方法
2021/12/12 6:17:26
本文主要是介绍JDK1.8 Steam()常用方法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
Stream的使用可极大的减少sql的复杂度和对数据库的访问压力,我们可以用sql将数据一次性全部取出来,根据我们的实际需要,去组织我们需要的数据。
分组
// 按照sn分组: List<Map<String, Object>> dataList Map<String, List<Map<String, Object>>> dataMap = dataList.stream().collect(Collectors.groupingBy(e -> e.get("sn") + "")); //按照职员部分分组: List<Employee> list Map<String, List<Employee>> collect = list.stream().collect(Collectors.groupingBy(i -> i.getUnitName())); //多条件分组 Map<String, Map<String,List<Employee>>> collect =list.stream().collect(Collectors.groupingBy(i -> i.getUnitName(),Collectors.groupingBy(i -> i.getWorkType())));
过滤
//根据指定sn,过滤出符合的数据: List<Map<String, Object>> deviceDataList List<Map<String, Object>> tempDeviceDataList = deviceDataList.stream().filter(map -> map.get("sn").toString().equals(sn)).collect(Collectors.toList()); //筛选出工资大于10000的职员 List<Employee> newList = list.stream().filter(item -> { return item.getSalary().compareTo(new BigDecimal(10000)) > 0 && !item.getWorkType().equals("项目经理"); }).collect(Collectors.toList());
List和Map互转
list转map
// (k1,k2)->k2 避免键重复 k1-取第一个数据;k2-取最后一条数据 //key和value,都可以根据传入的值返回不同的Map Map<String, String> deviceMap = hecmEnergyDevicesList.stream().collect(Collectors.toMap(i -> i.getDeviceNum(), j -> j.getDeviceName(), (k1, k2) -> k1)); // Map<String, Object> map = list.stream() .collect(Collectors.toMap(i -> i.getEmpName() + i.getUnitName(), j -> j, (k1, k2) -> k1));
map转list
//在.map里面构造数据 return什么数据就转成什么类型的list List<Employee> collect = map.entrySet().stream().map(item -> { Employee employee = new Employee(); employee.setId(item.getKey()); employee.setEmpName(item.getValue()); return employee; }).collect(Collectors.toList());
求和/极值
//在egyList里面求cols的和 public static BigDecimal getSumBig(List<Map<String,Object>> egyList, String cols){ BigDecimal consuBig = egyList.stream() .filter((Map m)->StringUtils.isNotEmpty(m.get(cols)+"") && !"null".equals(String.valueOf(m.get(cols))) && !"-".equals(String.valueOf(m.get(cols)))) .map((Map m)->new BigDecimal(m.get(cols)+"")) .reduce(BigDecimal.ZERO,BigDecimal::add); return consuBig; } //List<Employee> list //Bigdecimal求和/极值: BigDecimal sum = list.stream().map(Employee::getSalary).reduce(BigDecimal.ZERO,BigDecimal::add); BigDecimal max = list.stream().map(Employee::getSalary).reduce(BigDecimal.ZERO,BigDecimal::max); //基本数据类型求和/极值: Integer sum = list.stream().mapToInt(Employee::getId).sum(); OptionalInt optionalMax = list.stream().mapToInt(Employee::getId).max(); optionalMax.getAsInt();
求最大/最小值的对象
Optional<Employee> optional = list.stream().collect(Collectors.maxBy(Comparator.comparing(Employee::getId))); if (optional.isPresent()) { // 判断是否有值 Employee user = optional.get(); } return optional.orElse(new Employee());
去重
//去重之后进行拼接: List<String> deviceNodeList Srting deviceNodeStr = deviceNodeList.stream().distinct().collect(Collectors.joining("','")); //直接去重返回list // List<String> deviceIdList List<String> deviceIdList = deviceIdList.stream().distinct().collect(Collectors.toList());
排序
//按照时间排序 1升 -1降 Collections.sort(listFast, (p1, p2) -> { return String.valueOf(p1.get("time")).compareTo(p2.get("time") + ""); }); // s1-s2 升序 s2-s1降序 Collections.sort(list,(s1,s2) -> s1.getSalary().compareTo(s2.getSalary())); //多条件排序: List<Employee> list, s1-s2 升序 s2-s1降序 list.sort(Comparator.comparing(Employee::getSalary).reversed().thenComparing(Employee::getId).reversed());
拼接
//将某个字段,按照某个字符串拼接: List<Map<String, Object>> deviceMapList String sns = deviceMapList.stream() .map((m)->m.get("sn")+"").collect(Collectors.joining(",")); //使用场景很多,在sql里面用于组织in的值.比如: SELECT sn,time,value FROM electric_real_time WHERE FIND_IN_SET(sn,?) List<Map<String, Object>> dataList = JdbcUtil.getJdbcTemplate().queryForList(dataSql, sns)
统计
//统计:和、数量、最大值、最小值、平均值: List<Employee> list IntSummaryStatistics collect = list.stream().collect(Collectors.summarizingInt(Employee::getId)); System.out.println("和:" + collect.getSum()); System.out.println("数量:" + collect.getCount()); System.out.println("最大值:" + collect.getMax()); System.out.println("最小值:" + collect.getMin()); System.out.println("平均值:" + collect.getAverage());
平均值
OptionalDouble average = list.stream().mapToInt(Employee::getId).average(); average.getAsDouble();
某个值的数量
//List<Employee> list Map<BigDecimal, Long> collect = list.stream().collect(Collectors.groupingBy(i -> i.getSalary(),Collectors.counting())); //List<Map<String,Object>> egyList long count = egyList.stream() .filter((Map m)->StringUtils.isNotEmpty(m.get(cols)+"")) .map((Map m)->new BigDecimal(m.get(cols)+"")) .count();
分区
//List<Employee> list //单层分区 Map<Boolean, List<Employee>> collect = list.stream().collect(Collectors.partitioningBy(i -> i.getId() == 1)); //多层分区 Map<Boolean, Map<Boolean,List<Employee>>> collect = list.stream().collect(Collectors.partitioningBy(i -> i.getId() == 1,Collectors.partitioningBy(i -> i.getSalary().compareTo(new BigDecimal(20000)) == 0)));
这篇关于JDK1.8 Steam()常用方法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-102025 蛇年,J 人直播带货内容审核团队必备的办公软件有哪 6 款?
- 2025-01-10高效运营背后的支柱:文档管理优化指南
- 2025-01-10年末压力山大?试试优化你的文档管理
- 2025-01-10跨部门协作中的进度追踪重要性解析
- 2025-01-10总结 JavaScript 中的变体函数调用方式
- 2025-01-10HR团队如何通过数据驱动提升管理效率?6个策略
- 2025-01-10WBS实战指南:如何一步步构建高效项目管理框架?
- 2025-01-10实现精准执行:团队协作新方法
- 2025-01-10如何使用工具提升活动策划团队的工作效率?几个必备工具推荐
- 2025-01-10WiX 标签使用介绍:打造专业安装程序的利器