PostgreSQL分布式数据库实践
2021/12/16 2:48:41
本文主要是介绍PostgreSQL分布式数据库实践,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
为什么需要分布式数据库
有很多原因数据库需要扩展性。1、请求需要访问的数据量过大(单纯的数据量大不是理由,例如从不访问,归档即可);2、服务器CPU、内存、网络、IO到了瓶颈,响应时间大大下降;3、MPP中,集中式数据库在设计时通常为了开发人员使用更加顺畅和丝滑,尽可能的让数据库设计和SQL非常简单,比如不需要指定某些表实际上是存在主外键关系,从而导致并行执行效果打折;或者并行执行在一开始并不包含,后面逐渐增强,导致并行执行有天然的缺陷,分区亦如此。这三通常是根本原因。
Citus介绍
首先提供了比较公正参考的是citus中国写的一篇文章PG-XL,Citus,GreenPlum如何选择,不同于其他分布式数据库如tidb、oceanbase、tdsql等每家都说自己最厉害,citus还是比较客观的分析,它自己比较适合于OLTP下的分布式,并不适合于大规模的adhoc场景。实际上很多系统数据量积累的比较大、同时业务流程又很复杂,但是TPS不高,这些系统要应用于分布式数据库,物理模型的设计是很重要的,不是简单的库能套上去的,例如数据中心、历史库的包含就很重要了。亦或者上去了就下不来了,维护成本会非常高。
和其他分布式架构一样,citus也采用协调者和工作者节点,也可以认为是master和worker,说计算和存储分离是不合适的(大多数分布式数据库如oceanbase、goldendb、TDSQL自称计算和存储分离也是不合适的)。真正接近了存储和计算分离的是oracle exadata、tidb。如下所示,协调者和工作者一样都是postgresql实例。
SQL语句经过语法解析后,在协调者节点的analyze阶段被citus扩展(和greenplum、xl、xc不同的是,citus采用的是extension机制(pg定义了大量hook供各种extension访问,具体可参见postgresql内核开发必备之extension机制))替换,并进行SQL语句的fork and join过程。得益于extension这一点,你可以认为citus本质上和greenplum、xl以及xc在事务、语法语义等数据库本身特性的支持上是差不多的。而不是三方中间件如pgpool、pgbouncer中的硬塞实现。因此具有更好的一致性和稳定性保证。
在分布式事务的实现上,citus也是采用2PC协议。它的实现可以参考http://citusdb.cn/?p=661。
注:citus架构的优点在于,它认为分布式是一个特性,而不是属性。这一点LZ在所有场合都是这么坚信,95%+的系统永远都不需要微服务架构,数据库也不需要分布式,因为其到不了那个容量,所以理论上可以扩展使得应用能够同时运行于单实例和分布式,而其它一开始就设计为分布式的数据库是很难的。
因为没有做单独GTM节点的概念,citus无法的协调者无法实现多活,这种情况下容易出现协调者单点,如下:
对此,Citus还提供了两个参数use_secondary_node和writable_standby_coordinator以支持写入能力扩展及数据节点读写分离。这样standby cn也可以执行查询和DML操作。如下所示:
由此可见,可靠的分布式数据库架构是非常复杂的,如果没有非常一体化的监控管理平台,其维护难度可想而知。
参考:https://blog.csdn.net/weixin_46199817/article/details/117223870
Citus安装
可以从https://github.com/citusdata/citus下载源码或rpm,一般用户可以选择yum install citus101_13-10.1.1.citus-1.el7.x86_64。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | [zjh@lightdb1 usr]$ rpm -ql postgresql13-13.3-1PGDG.rhel7.x86_64 /usr/pgsql-13/bin/clusterdb /usr/pgsql-13/bin/createdb /usr/pgsql-13/bin/createuser /usr/pgsql-13/bin/dropdb /usr/pgsql-13/bin/dropuser /usr/pgsql-13/bin/pg_basebackup /usr/pgsql-13/bin/pg_config /usr/pgsql-13/bin/pg_dump /usr/pgsql-13/bin/pg_dumpall [zjh@lightdb1 usr]$ rpm -qa | grep citus citus_13-10.0.3-1.rhel7.x86_64 r[zjh@lightdb1 usr]$ rpm -ql citus_13-10.0.3-1.rhel7.x86_64 /usr/pgsql-13/doc/extension/README-citus.md /usr/pgsql-13/lib/citus.so /usr/pgsql-13/share/extension/citus--10.0-1--10.0-2.sql /usr/pgsql-13/share/extension/citus--10.0-2--10.0-3.sql /usr/pgsql-13/share/extension/citus--8.0-1--8.0-2.sql /usr/pgsql-13/share/extension/citus--8.0-1.sql /usr/pgsql-13/share/extension/citus--8.0-10--8.0-11.sql /usr/pgsql-13/share/extension/citus--8.0-11--8.0-12.sql /usr/pgsql-13/share/extension/citus--8.0-12--8.0-13.sql /usr/pgsql-13/share/extension/citus--8.0-13--8.1-1.sql /usr/pgsql-13/share/extension/citus--8.0-2--8.0-3.sql /usr/pgsql-13/share/extension/citus--8.0-3--8.0-4.sql /usr/pgsql-13/share/extension/citus--8.0-4--8.0-5.sql /usr/pgsql-13/share/extension/citus--8.0-5--8.0-6.sql /usr/pgsql-13/share/extension/citus--8.0-6--8.0-7.sql /usr/pgsql-13/share/extension/citus--8.0-7--8.0-8.sql /usr/pgsql-13/share/extension/citus--8.0-8--8.0-9.sql /usr/pgsql-13/share/extension/citus--8.0-9--8.0-10.sql /usr/pgsql-13/share/extension/citus--8.1-1--8.2-1.sql /usr/pgsql-13/share/extension/citus--8.2-1--8.2-2.sql /usr/pgsql-13/share/extension/citus--8.2-2--8.2-3.sql /usr/pgsql-13/share/extension/citus--8.2-3--8.2-4.sql /usr/pgsql-13/share/extension/citus--8.2-4--8.3-1.sql /usr/pgsql-13/share/extension/citus--8.3-1--9.0-1.sql /usr/pgsql-13/share/extension/citus--9.0-1--9.0-2.sql /usr/pgsql-13/share/extension/citus--9.0-2--9.1-1.sql /usr/pgsql-13/share/extension/citus--9.1-1--9.2-1.sql /usr/pgsql-13/share/extension/citus--9.2-1--9.2-2.sql /usr/pgsql-13/share/extension/citus--9.2-2--9.2-4.sql /usr/pgsql-13/share/extension/citus--9.2-4--9.3-2.sql /usr/pgsql-13/share/extension/citus--9.3-1--9.2-4.sql /usr/pgsql-13/share/extension/citus--9.3-2--9.4-1.sql /usr/pgsql-13/share/extension/citus--9.4-1--9.5-1.sql /usr/pgsql-13/share/extension/citus--9.5-1--10.0-1.sql /usr/pgsql-13/share/extension/citus.control /usr/share/doc/citus_13-10.0.3 /usr/share/doc/citus_13-10.0.3/CHANGELOG.md /usr/share/licenses/citus_13-10.0.3 /usr/share/licenses/citus_13-10.0.3/LICENSE |
然后正常通过initdb创建postgresql数据库,1个CN,2个DN。
如下:
1 2 3 4 5 6 7 8 9 | [zjh@lightdb1 pgsql-13]$ ll total 24 drwxr-xr-x 2 zjh zjh 4096 Jun 1 17:43 bin drwx------ 21 zjh zjh 4096 Aug 29 00:00 coordinator_1 drwxr-xr-x 3 zjh zjh 23 Jun 1 17:43 doc drwxr-xr-x 3 zjh zjh 4096 Jun 19 14:58 lib drwxr-xr-x 7 zjh zjh 4096 Jun 1 17:43 share drwx------ 21 zjh zjh 4096 Aug 29 00:00 worker_1_13588 drwx------ 21 zjh zjh 4096 Aug 29 00:00 worker_2_23588 |
安装citus插件:
1 2 3 | -- CN和DN都要配置 shared_preload_libraries='citus' -- 第一个插件必须是citus CREATE EXTENSION citus; -- 安装在postgres用户下即可 |
1 2 | SELECT * from citus_add_node('10.0.0.1', 13588); SELECT * from citus_add_node('10.0.0.1', 23588); |
查询DN列表:
1 2 3 4 5 6 | postgres=# SELECT * FROM citus_get_active_worker_nodes(); node_name | node_port --------------+----------- 10.0.0.1 | 23588 10.0.0.1 | 13588 (2 rows) |
概念
在citus中,分片和节点不是一对一关系,这一点不同于greenplum,更接近nosql如couchbase的设计,一定程度上这么做也避免了使用了citus之后还需要分区的必要性(这是个优点、也是个缺点,平衡的结果)。
Citus表类型
citus中表分三种类型,1:分库表(每个DN n个分片,分片数量可配置,一般是订单表和客户表);2:广播表(每个DN一份,CN不包括,一般是字典表、产品表、费率表、机构表、权限表等);3:全局表(仅存在于CN,一些系统参数表,统计表,也可能广播存储,看情况),全局表一般不会和广播表、分库表进行关联,默认CN创建表的时候就是local表,也可以通过SELECT undistribute_table('github_events');将分库表切换回local表(此时会数据先迁移回来,也是缩容的一种方式)。
广播表和分库表,广播表和广播表之间关联会很多。
同时会存在多种业务存在于同一个数据库中的情况,例如库存和客户,操作日志和订单,小二和菜单、功能、客户,并且同时有从菜单维度查,也有从小二维度查。所以citus支持对表进行分组,相关分组的表,citus在生成分布式执行计划的时候就知道那些是相关的,哪些是无关的。如下:
SELECT create_distributed_table('event', 'tenant_id');
SELECT create_distributed_table('page', 'tenant_id', colocate_with => 'event');
分组的前提是两个表使用相同字段作为分片字段。分组可以使得SQL的优化更加进一步。
总有一会儿,你会发现库存和客户表进行关联,通过订单进行的。这个时候库存是根据产品分片的,客户是通过客户id分片的。此时效果会怎么样呢?
不同于greenplum支持distributed by语法,citus因为采用extension实现,没有扩展pg本身的语法,所以采用函数的方式来指定表是否为分布式表。
1 2 3 4 5 6 7 8 9 | CREATE TABLE companies ( id bigserial PRIMARY KEY, name text NOT NULL, image_url text, created_at timestamp without time zone NOT NULL, updated_at timestamp without time zone NOT NULL ); SELECT create_distributed_table('companies', 'id'); -- companies表为分布式表,id是用于分片的字段 |
需要注意的是,citus分片数量和worker数量不是一一对应,这和gp不同,但类似于现在tidb、oceanbase的做法。如下:
要创建广播表,可以使用create_reference_table函数:
1 | SELECT create_reference_table('geo_ips'); -- 所有worker节点广播,不包含CN |
大多数的DDL语句citus都支持,会负责分布式调用所有worker。
自定义数据分布算法、副本数、分片数
Citus函数类型
不管用户是否承认,相同的功能,存储过程和函数实现的效率就是要比应用发送SQL过来效率更高。所以citus支持了分布式函数的概念。
新增节点
新增节点后,默认不会启用,需要调用rebalance_table_shards让citus对数据进行迁移,然后才会被访问。
SELECT rebalance_table_shards('companies');
执行计划分析
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | explain(analyze,verbose,buffers) select count(*) as low_stock from ( select s_w_id, s_i_id, s_quantity from bmsql_stock where s_w_id = 975 and s_quantity < 12 and s_i_id in ( select ol_i_id from bmsql_district join bmsql_order_line on ol_w_id = d_w_id and ol_d_id = d_id and ol_o_id >= d_next_o_id - 20 and ol_o_id < d_next_o_id where d_w_id = 975 and d_id = 9 ) ) as L QUERY PLAN | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ Custom Scan (Citus Adaptive) ( cost = 0 .00..0.00 rows = 0 width = 0 ) (actual time = 9 .781..9.782 rows = 1 loops = 1 ) | Output: remote_scan.low_stock | Task Count: 1 | Tuple data received from nodes: 1 bytes | Tasks Shown: All | -> Task | Query: SELECT count(*) AS low_stock FROM (SELECT bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity FROM public.bmsql_stock_103384 bmsql_stock WHERE ((bmsql_stock.s_w_id OPERATOR(pg_catalog.=) 975) AND (bmsql_stock.s_quantity OPERATOR(| Tuple data received from node: 1 bytes | Node: host=127.0.0.1 port=13588 dbname=postgres | -> Aggregate (cost=25597.32..25597.33 rows=1 width=8) (actual time=1.276..1.277 rows=1 loops=1) | Output: count(*) | Buffers: shared hit=810 | -> Nested Loop (cost=7612.59..25597.14 rows=73 width=0) (actual time=0.389..1.272 rows=4 loops=1) | Inner Unique: true | Buffers: shared hit=810 | -> HashAggregate (cost=7612.16..7646.24 rows=3408 width=4) (actual time=0.163..0.206 rows=186 loops=1) | Output: bmsql_order_line.ol_i_id | Group Key: bmsql_order_line.ol_i_id | Batches: 1 Memory Usage: 129kB | Buffers: shared hit=42 | -> Nested Loop (cost=0.71..7603.64 rows=3408 width=4) (actual time=0.055..0.131 rows=189 loops=1) | Output: bmsql_order_line.ol_i_id | Buffers: shared hit=42 | -> Index Scan using bmsql_district_pkey_103191 on public.bmsql_district_103191 bmsql_district (cost=0.27..8.30 rows=1 width=12) (actual time=0.014..0.014 rows=1 loops=1) | Output: bmsql_district.d_w_id, bmsql_district.d_id, bmsql_district.d_ytd, bmsql_district.d_tax, bmsql_district.d_next_o_id, bmsql_district.d_name, bmsql_district.d_street_1, bmsql_district.d_street_2, bmsql_district.d| Index Cond: ((bmsql_district.d_w_id = 975) AND (bmsql_district.d_id = 9)) | Buffers: shared hit=3 | -> Index Scan using bmsql_order_line_pkey_103351 on public.bmsql_order_line_103351 bmsql_order_line (cost=0.44..7561.26 rows=3408 width=16) (actual time=0.022..0.081 rows=189 loops=1) | Output: bmsql_order_line.ol_w_id, bmsql_order_line.ol_d_id, bmsql_order_line.ol_o_id, bmsql_order_line.ol_number, bmsql_order_line.ol_i_id, bmsql_order_line.ol_delivery_d, bmsql_order_line.ol_amount, bmsql_order_line.| Index Cond: ((bmsql_order_line.ol_w_id = 975) AND (bmsql_order_line.ol_d_id = 9) AND (bmsql_order_line.ol_o_id >= (bmsql_district.d_next_o_id - 20)) AND (bmsql_order_line.ol_o_id < bmsql_district.d_next_o_id )) | Buffers: shared hit = 39 | -> Index Scan using bmsql_stock_pkey_103384 on public.bmsql_stock_103384 bmsql_stock (cost=0.43..5.27 rows=1 width=4) (actual time=0.006..0.006 rows=0 loops=186) | Output: bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity, bmsql_stock.s_ytd, bmsql_stock.s_order_cnt, bmsql_stock.s_remote_cnt, bmsql_stock.s_data, bmsql_stock.s_dist_01, bmsql_stock.s_dist_02, bmsql_stock.s_dist_03| Index Cond: ((bmsql_stock.s_w_id = 975) AND (bmsql_stock.s_i_id = bmsql_order_line.ol_i_id)) | Filter: (bmsql_stock.s_quantity < 12) | Rows Removed by Filter: 1 | Buffers: shared hit=768 | Planning Time: 0.755 ms | Execution Time: 1.498 ms | Planning: | Buffers: shared hit=3 | Planning Time: 0.324 ms | Execution Time: 9.796 ms | |
一般SQL,失真不算很严重。
高可用
CN成为瓶颈
bypass-CN模式
使用benchmarksql进行TPC-C测试
因为TPC-C所有的表都co-location到warehouse_id了,所以跑TPCC是没有问题的。只不过citus的重写着实有点蠢。如下:
1 2 | 2021-10-07 21:21:47.037945T [239675] LOG: duration: 97782.322 ms execute < unnamed >: SELECT count(*) AS low_stock FROM (SELECT bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity FROM public.bmsql_stock_103379 bmsql_stock WHERE ((bmsql_stock.s_w_id OPERATOR(pg_catalog.=) $1) AND (bmsql_stock.s_quantity OPERATOR(pg_catalog.<) $2) AND (bmsql_stock.s_i_id OPERATOR(pg_catalog.=) ANY (SELECT bmsql_order_line.ol_i_id FROM (public.bmsql_district_103186 bmsql_district JOIN public.bmsql_order_line_103346 bmsql_order_line ON (((bmsql_order_line.ol_w_id OPERATOR(pg_catalog.=) bmsql_district.d_w_id) AND (bmsql_order_line.ol_d_id OPERATOR(pg_catalog.=) bmsql_district.d_id) AND (bmsql_order_line.ol_o_id OPERATOR(pg_catalog.>=) (bmsql_district.d_next_o_id OPERATOR(pg_catalog.-) 20)) AND (bmsql_order_line.ol_o_id OPERATOR(pg_catalog.<) bmsql_district.d_next_o_id)))) WHERE ((bmsql_district.d_w_id OPERATOR(pg_catalog.=) $3) AND (bmsql_district.d_id OPERATOR(pg_catalog.=) $4)))))) l 2021-10-07 21:21:47.037945T [239675] DETAIL: parameters: $1 = '974', $2 = '13', $3 = '974', $4 = '10' |
同时,citus到worker节点后,执行计划的效果很不理想。有些select count(1)执行居然要几十秒,在单机时只要及时毫秒。tpmC从20万掉下到6万。
管理接口
除了标准的建表功能外,分布式数据库至少要支持:
显示的广播接口,包括:到每个主worker节点,到每个主副worker节点,到每个主分片,到每个主副分片。
显示的单播可用接口,包括:到任一worker节点,到任一分片。
p14.6 Manual Query Propagation
TPC-H测试
citus对TPC-H的支持不太好,准确的是说复杂关联支持不好。但凡涉及到关联字段不包含分片键、没有co-location的几乎都不支持。如下:
1 | Vuser 1:Query Failed : select o_year, sum(case when nation = 'MOZAMBIQUE' then volume else 0 end) / sum(volume) as mkt_share from ( select extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) as volume, n2.n_name as nation from part, supplier, lineitem, orders, customer, nation n1, nation n2, region where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'AFRICA' and s_nationkey = n2.n_nationkey and o_orderdate between date '1995-01-01' and date '1996-12-31' and p_type = 'STANDARD POLISHED STEEL') all_nations group by o_year order by o_year : ERROR: complex joins are only supported when all distributed tables are co-located and joined on their distribution columns |
1 | Vuser 1:Query Failed : select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal from ( select substr(c_phone, 1, 2) as cntrycode, c_acctbal from customer where substr(c_phone, 1, 2) in ('23', '32', '17', '18', '16', '20', '25') and c_acctbal > ( select avg(c_acctbal) from customer where c_acctbal > 0.00 and substr(c_phone, 1, 2) in ('23', '32', '17', '18', '16', '20', '25')) and not exists ( select * from orders where o_custkey = c_custkey)) custsale group by cntrycode order by cntrycode : ERROR: direct joins between distributed and local tables are not supported |
因为citus是插件化,注定了不可能和原生GP一样默认为分布式MPP而生。开启citus.enable_repartition_joins后,有10个语句默认跑不通。
CITUS注意点
1 2 3 4 5 | postgres=# create table t_batch(id int primary key generated always as identity,d1 bigint,d2 bigint,d3 bigint); CREATE TABLE postgres=# SELECT create_distributed_table('t_batch','id'); ERROR: cannot distribute relation: t_batch DETAIL: Distributed relations must not use GENERATED ... AS IDENTITY. |
但是bigserial居然支持?
1 2 3 4 5 6 7 | postgres=# create table t_batch(id bigserial primary key,d1 bigint,d2 bigint,d3 bigint); CREATE TABLE postgres=# SELECT create_distributed_table('t_batch','id'); create_distributed_table -------------------------- (1 row) |
序列及序列作为默认值支持
1 2 3 4 5 | postgres=# alter table bmsql_history postgres-# alter column hist_id set default nextval('bmsql_hist_id_seq'); ALTER TABLE postgres=# alter table bmsql_history add primary key (hist_id); -- 约束必须加名字 ERROR: cannot create constraint without a name on a distributed table |
1 2 3 | alter table bmsql_history add constraint bmsql_history_pkey primary key (hist_id); ERROR: cannot create constraint on "bmsql_history" Detail: Distributed relations cannot have UNIQUE, EXCLUDE, or PRIMARY KEY constraints that do not include the partition column (with an equality operator if EXCLUDE). |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | postgres=# select pg_size_pretty(citus_relation_size('search_doc_new_ic')); pg_size_pretty ---------------- 10045 MB (1 row) Time: 1.367 ms postgres=# select pg_size_pretty(citus_table_size('search_doc_new_ic')); -- 不应该差这么多 pg_size_pretty ---------------- 216 GB (1 row) Time: 14.957 ms postgres=# select pg_size_pretty(citus_total_relation_size('search_doc_new_ic')); pg_size_pretty ---------------- 243 GB (1 row) |
主外键限制
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | tpch=# SELECT create_distributed_table('orders', 'o_orderkey'); NOTICE: Copying data from local table... NOTICE: copying the data has completed DETAIL: The local data in the table is no longer visible, but is still on disk. HINT: To remove the local data, run: SELECT truncate_local_data_after_distributing_table($$public.orders$$) ERROR: cannot create foreign key constraint since relations are not colocated or not referencing a reference table DETAIL: A distributed table can only have foreign keys if it is referencing another colocated hash distributed table or a reference table tpch=# \dS+ orders Table "public.orders" Column | Type | Collation | Nullable | Default | Storage | Stats target | Description -----------------+-----------------------------+-----------+----------+---------+----------+--------------+------------- o_orderdate | timestamp without time zone | | | | plain | | o_orderkey | numeric | | not null | | main | | o_custkey | numeric | | not null | | main | | o_orderpriority | character(15) | | | | extended | | o_shippriority | numeric | | | | main | | o_clerk | character(15) | | | | extended | | o_orderstatus | character(1) | | | | extended | | o_totalprice | numeric | | | | main | | o_comment | character varying(79) | | | | extended | | Indexes: "orders_pk" PRIMARY KEY, btree (o_orderkey) "order_customer_fkidx" btree (o_custkey) Foreign-key constraints: "order_customer_fk" FOREIGN KEY (o_custkey) REFERENCES customer(c_custkey) Referenced by: TABLE "lineitem" CONSTRAINT "lineitem_order_fk" FOREIGN KEY (l_orderkey) REFERENCES orders(o_orderkey) Access method: heap NOTICE: removing table public.lineitem from metadata as it is not connected to any reference tables via foreign keys tpch=# SELECT create_distributed_table('part', 'p_partkey'); NOTICE: Copying data from local table... NOTICE: copying the data has completed DETAIL: The local data in the table is no longer visible, but is still on disk. HINT: To remove the local data, run: SELECT truncate_local_data_after_distributing_table($$public.part$$) ERROR: cannot create foreign key constraint since foreign keys from reference tables and local tables to distributed tables are not supported DETAIL: Reference tables and local tables can only have foreign keys to reference tables and local tables |
这篇关于PostgreSQL分布式数据库实践的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-01-05快速清空 PostgreSQL 数据库中的所有表格,让你的数据库重新焕然一新!
- 2024-01-04在PostgreSQL中创建角色:判断角色是否存在并创建
- 2023-05-16PostgreSQL一站式插件推荐 -- pg_enterprise_views
- 2022-11-22PostgreSQL 实时位置跟踪
- 2022-11-22如何将PostgreSQL插件移植到openGauss
- 2022-11-11PostgreSQL:修改数据库用户的密码
- 2022-11-06Windows 环境搭建 PostgreSQL 物理复制高可用架构数据库服务
- 2022-10-27Windows 环境搭建 PostgreSQL 逻辑复制高可用架构数据库服务
- 2022-10-11PostgreSql安装(Windows10版本)
- 2022-09-13PostgreSQL-Network Address类型操作和函数