Note -「0/1 Fractional Programming」
2021/12/16 23:13:27
本文主要是介绍Note -「0/1 Fractional Programming」,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
\(\mathbb{No \ hay \ cosa \ mas \ feliz \ en \ el \ mundo \ que \ ver \ tu \ sonrisa \ mi \ Miffy}\)
What is that?
Let us pay attention to a common problem that we often meet in daily life:
There are \(n\) different commodities. Each commodity has two attributes, one for value \(v,v>0\), the other for cost \(w, w>0\). Now, you should to choose some of them to let the cost performance highest.
Mathematically, if we let \(V = {\large \sum \limits _{i = 1}^{n}} v(i)x(i)\), \(W = {\large \sum \limits _{i = 1}^{n}} w(i)x(i)\), the answer will change to \(\dfrac {V} {W}\). Noticed every element \(x(i)\) of function \(x\), we stipulate that \(x(i)\) only can equal to \(0\) or \(1\). They respectively indicate whether the commodity is taken or not.
The Fractional Programming is such a solution to these kind of problem.
How to do it?
Let the integer \(D\) equals to \(\dfrac {V} {W}\). Because the situation \(W\) equal to zero is meaningless, so it is easy to find that \(DW = V\). Deform this equation, \(DW - V = 0\).
这篇关于Note -「0/1 Fractional Programming」的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2025-01-05Easysearch 可搜索快照功能,看这篇就够了
- 2025-01-04BOT+EPC模式在基础设施项目中的应用与优势
- 2025-01-03用LangChain构建会检索和搜索的智能聊天机器人指南
- 2025-01-03图像文字理解,OCR、大模型还是多模态模型?PalliGema2在QLoRA技术上的微调与应用
- 2025-01-03混合搜索:用LanceDB实现语义和关键词结合的搜索技术(应用于实际项目)
- 2025-01-03停止思考数据管道,开始构建数据平台:介绍Analytics Engineering Framework
- 2025-01-03如果 Azure-Samples/aks-store-demo 使用了 Score 会怎样?
- 2025-01-03Apache Flink概述:实时数据处理的利器
- 2025-01-01使用 SVN合并操作时,怎么解决冲突的情况?-icode9专业技术文章分享
- 2025-01-01告别Anaconda?试试这些替代品吧