【图像识别】基于模板匹配算法实现手写英文字母识别matlab代码
2021/12/20 1:19:42
本文主要是介绍【图像识别】基于模板匹配算法实现手写英文字母识别matlab代码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
1 简介
人类文明的发展离不开信息的传递.文字一直是人们传递信息的一个重要媒介,承载着记录人类文明的重要使命.随着科技的发展,积累的文字信息日益增多,有效的存储和利用这些文字信息成为一个亟待解决的问题.光学字符识别的出现为这一问题提供了解决方法.手写体数字识别是光学字符识别的重要分支,因其在金融,邮政,医疗,交通,教育等领域中广泛的应用而日益被重视.目前,已有多种手写体数字识别算法,但都很难满足手写体数字识别应用时对识别率近乎百分之百的要求,所以,几乎没有能够实际应用的识别算法. 本文采用模板匹配算法实现手写体数字识别。
2 部分代码
function varargout = IdentifyEnglish(varargin) % IDENTIFYENGLISH MATLAB code for IdentifyEnglish.fig % IDENTIFYENGLISH, by itself, creates a new IDENTIFYENGLISH or raises the existing % singleton*. % % H = IDENTIFYENGLISH returns the handle to a new IDENTIFYENGLISH or the handle to % the existing singleton*. % % IDENTIFYENGLISH('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in IDENTIFYENGLISH.M with the given input arguments. % % IDENTIFYENGLISH('Property','Value',...) creates a new IDENTIFYENGLISH or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before IdentifyEnglish_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to IdentifyEnglish_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help IdentifyEnglish % Last Modified by GUIDE v2.5 05-May-2019 16:46:08 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @IdentifyEnglish_OpeningFcn, ... 'gui_OutputFcn', @IdentifyEnglish_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before IdentifyEnglish is made visible. function IdentifyEnglish_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to IdentifyEnglish (see VARARGIN) % Choose default command line output for IdentifyEnglish handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes IdentifyEnglish wait for user response (see UIRESUME) % uiwait(handles.figure1); axis([0 240 0 240]); % --- Outputs from this function are returned to the command line. function varargout = IdentifyEnglish_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; clc; % --- Executes on button press in pushbuttonSave. function pushbuttonSave_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonSave (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [f, p] = uiputfile({'*.bmp'},'save image file');%打开用于保存文件的对话框 str = strcat(p,f); %连接两个字符串(把路径和文件串联起来) px = getframe(handles.axes1);%使用 getframe 来将图像捕获为影片帧。 CurImg = frame2im(px);%然后,frame2im将捕获的影片帧转换为图像数据。 imwrite(CurImg,str,'bmp'); % --- Executes on mouse press over figure background, over a disabled or % --- inactive control, or over an axes background. function figure1_WindowButtonDownFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global ButtonDown pos1 if strcmp(get(gcf,'SelectionType'),'normal') ButtonDown = 1; pos1 = get(handles.axes1,'CurrentPoint'); % disp(pos1); end % --- Executes on mouse motion over figure - except title and menu. function figure1_WindowButtonMotionFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global ButtonDown pos1 if(ButtonDown == 1) pos = get(handles.axes1,'CurrentPoint'); line([pos1(1,1) pos(1,1)],[pos1(1,2) pos(1,2)],'LineStyle','-','LineWidth',8,'color','black','marker','.','markerSize',25); pos1 = pos; end % --- Executes on mouse press over figure background, over a disabled or % --- inactive control, or over an axes background. function figure1_WindowButtonUpFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global ButtonDown ButtonDown = 0; % --- Executes on button press in pushbuttonClear. function pushbuttonClear_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonClear (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) cla; % --- Executes on button press in pushbuttonIdentify. function pushbuttonIdentify_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonIdentify (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) strSample = 'pattern.mat'; px = getframe(handles.axes1); CurImg = frame2im(px); %figure; imshow(CurImg); CurFea = GetFeature(CurImg);%把CurImg属性改成为5x5 load('pattern.mat'); label = Identify(pattern,CurFea); % msgbox(['字母识别为: ' label],'msg'); str = ['字母识别为:',label]; f = warndlg(str,'字母识别结果');
3 仿真结果
4 参考文献
[1]高彤, 吕民. 基于模板匹配的手写体字符识别方法[J]. 哈尔滨工业大学学报, 1999, 31(1):3.
部分理论引用网络文献,若有侵权联系博主删除。
这篇关于【图像识别】基于模板匹配算法实现手写英文字母识别matlab代码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!
- 2024-12-22程序员出海做 AI 工具:如何用 similarweb 找到最佳流量渠道?
- 2024-12-20自建AI入门:生成模型介绍——GAN和VAE浅析
- 2024-12-20游戏引擎的进化史——从手工编码到超真实画面和人工智能
- 2024-12-20利用大型语言模型构建文本中的知识图谱:从文本到结构化数据的转换指南
- 2024-12-20揭秘百年人工智能:从深度学习到可解释AI
- 2024-12-20复杂RAG(检索增强生成)的入门介绍
- 2024-12-20基于大型语言模型的积木堆叠任务研究
- 2024-12-20从原型到生产:提升大型语言模型准确性的实战经验
- 2024-12-20啥是大模型1
- 2024-12-20英特尔的 Lunar Lake 计划:一场未竟的承诺